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[Abstract] Objective To investigate the effect of insulin-like growth factor-1 (IGF-1) on alveolar epi-
thelial cells senescence caused pulmonary fibrosis. Methods Bleomycin (BLLM) was used to establish the mice
pulmonary fibrosis model,and the expression change of IGF-1 was observed by immunohistochemistry. IGF-1
was used to stimulate A549 cell line (72 h) to establish the cell senescence model. The number of senescent
positive cells was observed by B-galactosidase staining. The effect of IGF-1 on the expression of P16 and P21
was observed by immunofluorescence. The expression changes of transforming growth factor-1 (TGF-1) and
matrix metalloproteinase-9 (MMP-9) after IGF-1 stimulating A549 cells was observed by ELISA. The effect
of IGF-1 on transdifferentiation of A549 cells was detected by Western blot. The effects of IGF-1 on PI3K and
p-AKT in the downstream signaling pathway were detected by RT-PCR. Results Compared with the normal
mice lung,IGF-1 was widely expressed in the lungs of BLM mice. Compared with the control group,the num-
ber of senescence positive cells after 72 h of IGF-1 stimulating A549 cells was significantly increased (P <<
0.05) ,and the expressions of cell senescence key proteins P16 and P21 were also significantly up-regulated
(P<<0.05). After IGF-1 stimulating A549 cells for 72 h, the expression levels of main components TGF-#1
and MMP-9 in the medium were higher than those in the control group (P<C0. 05). Compared with the control
group,IGF-1 made the transdifferentiation phenomenon occurrence of A549 cells (EMT) ,and increase the a-SMA
and Collagen I expression (P<C0. 05). Compared with the control group,IGF-1 significantly increased the expressions
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of PI3K and p-AKT in A549 cells (P<C0. 05). Conclusion

1639

IGF-1 is an important factor in promoting the ag-

ing of alveolar epithelial cells and the progression of pulmonary fibrosis, moreover which is related to the acti-

vation of IGF-1/PI3K/AKT signaling pathway.
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