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Research progress on GPX4 regulation of macrophage ferroptosis
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[Abstract] Atherosclerosis is the pathological basis of most cardiovascular and cerebrovascular diseases,
such as coronary heart disease and stroke. Ferroptosis,as a non-apoptotic cell death pattern characterized by i-
ron-dependent lipid peroxidation, has been confirmed to be involved in the physiological and pathological
processes of various diseases. Among them,ferroptosis of macrophages plays a key role in the occurrence and
development of atherosclerosis. This article will discuss the relationship between macrophage ferroptosis and
the occurrence and development of atherosclerosis,as well as the latest research on the regulatory targets of
glutathione peroxidase 4 (GPX4) in macrophage ferroptosis and related drugs. It will systematically integrate
the interactions of GPX4-independent pathways [ ferroptosis suppressor protein 1 (FSP1) ] and innate immune
receptors [ nucleotide-binding oligomerization domain-containing protein 1 (NOD1) ] in macrophage ferropto-
sis within atherosclerosis,providing a groundbreaking perspective for the prevention and treatment of athero-
sclerosis. This is expected to offer new strategies for the study of the pathological mechanisms of atherosclero-
sis and its prevention and treatment.
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Gh s TR TRRE IR B A0 RE A Rk it #
BREE VTGI8 R AR B % R 2 IR RBC AL,
TEIMLLE 3R AR )& i 72 v, Bk 2 & Bl A O OC HE ik 1k
A Aok X e i 20 R . m&, mHh e
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TR b B W A0 S A= 0 T i 3R 3 Lo 1A
SEH SR SRR A B e L A B AR R
AT, DO) = 2 5 By T P AR IS Jo o R Ak o AR A b
Tk (glutathione , GSH) & B2 {14 #6 . GPX4 1 £ & %
DAL Q10 F0 — &0 3L T R B &0 W 5 & el b 55
T BT By B S S A
BRACT Y B B AL R kAR i I B TR e
2 Jok 08 R T Ak B B, 0 ) HL i S R
2 GPX4F#EERMAMIKIETHHEXER

GPX4 & —FhoF| 38 578 GSH 1 Jhy 318 J5E 550 ok i
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LDL il i 3 GPX4 {5 PEiE SR T B IE T34
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5 A5 10 W A rp v 3Rk Ll i ) GPX4 2 i ox-
LDL 55 0 B WE 40 2R FE T, @ Inc-MRGPRF-6: 1
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IR EE PR M R G2 A R R 1 0 T2 B ik A 5 el
fie 5 HH 2 FSP1, # # Mox FH W40 i &k s - A
SR P A S S E ST, M e R Bt A L Bk
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FEAE AN T2 et BRI T A RO i A e S
I R IE 0 o RV AR Ol K 9K B R 25 1k & W 7 JE B AT
SE PRI T B SN Ik ok e BB Ak vk g L M e R i E—
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BT E AR ERIE T TEMARSN LK b, ff ] Ferrosta-
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T SEMLHI B R 2R 15 5 4 UL T — 4
LM TR H RS, kS S e 2 R 25 o A
T 43 F BV AE A FE 6 4L sk B R K aE S R 4R
MU AR A AE W A IR, 6T GPX4 H5EIET- X &R
BB 5T H Al AR T L RE S2 5 B B, R AR R
W5z .
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