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[ Abstract] Hepatocellular carcinoma (HCC) is characterized by high incidence and poor prognosis. Hep-
atitis B virus (HBV) infection is one of its primary causes,with HBV-related HCC accounting for 70% —80%
of all HCC cases. In addition to surgical resection, molecular biological therapy is increasingly important in
HCC treatment. Recent advances in research technologies have led to growing evidence demonstrating that
RNA-binding proteins (RBPs) play critical regulatory roles in HCC pathogenesis. Furthermore, RBPs partici-
pate in the development and functional regulation of the immune system. Consequently,they are emerging as a
focal point for novel therapeutic strategies in malignancies and autoimmune diseases. This review aimed to
summarize the molecular regulatory mechanisms of RBPs in the pathogenesis of HBV-associated HCC.
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