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Value of deep learning reconstruction in high-resolution

T2-weighted imaging of the uterus”
PAN Jing,JIN Rui \CHU Zhigang .YU Rengiang”
(Department of Radiology sthe First Affiliated Hospital of Chongqing Medical
University ,Chongqging 400016 ,China)

[ Abstract] Objective To evaluate the application of deep learning reconstruction (DLR) in high-resolu-
tion T2WI of the uterus and compare it with traditional reconstruction method. Methods A total of 45 pa-
tients diagnosed with cervical cancer and undergoing pelvic MRI scans at the hospital from May to August
2024 were prospectively included in the study. DLR technology was used to reconstruct high-resolution T2WI
images, which were then compared with high-resolution T2WI images obtained using traditional reconstruc-
tion techniques. Likert-type scale was employed for subjective quality evaluation of artifacts and tissue con-
trast in high-resolution T2WI images,while relative contrast (RC) between the lesion area and uterine myo-
metrium was used for objective quality assessment of the images. Results The artifact score of high-resolu-
tion T2WI images obtained using DLR technology showed no significant difference compared to traditional re-
construction method (4. 2240. 42 vs. 4.16%0.37,P =0. 18). However, the tissue contrast score was signifi-
cantly higher than that of traditional reconstruction methods(4. 38 0. 49 ws. 3. 98+0. 26, P <0. 001). The
RC of high-resolution T2WI images obtained using DLR technology was superior to that of traditional recon-
struction methods (0.7440. 06 vs. 0.7130. 05, P <C0. 001). Conclusion DLR demonstrates significant ad-
vantages in high-resolution uterine T2WI. Although it shows no significant difference in artifact suppression
compared to traditional methods,it improves tissue contrast and enhances lesion visualization.
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