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Study on PPARS agonists in reducing myocardial ischemia/reperfusion

injury through PGC-1/NFRs pathway "
LI1U Jianlong ., ZHANG Mingziao, TIAN Qingxin
(Department of Anesthesiology ,First Affiliated Hospital of Wenzhou Medical University ,
Wenzhou , Zhejiang 325000,China)

[Abstract] Objective To investigate the effects of PPARS agonist pretreatment on mice myocardial is-
chemia-reperfusion injury (MI/RI). Methods The mice were divided into the control group (sham operation
group) smodel group (ischemia for 30 min, reperfusion for 24 h),experiment group 1 (GW501516,3 mg *
kg™' « d7') and experiment group 2 (GW501516,10 mg » kg™' « d7'). LVEF, LVFS, serum CK-MB, LDH
and c¢Tnl levels in the mice of each group were measured;the wet-dry myocardial tissue weight ratio was de-
tected,the myocardial histomorphology was observed by microscope, the myocardial cellular apoptosis rate
was detected by in situ end labeling (TUNEL) ;Bax and Bcl-2 were detected by Western blot;the mRNA ex-
pressions of PGC-1,NFR-1 and NFR-2 were detected by PCR. Results Compared with the control group,the
wet-dry weight ratio, myocardial cellular apoptosis rate, CK-MB, LDH, cTnl and Bax protein expressions in
the model group were increased, and the Bcl-2 protein expression, LVEF,LVFS,PGC-1 mRNA,NFR-1 mR-
NA and NFR-2 mRNA were decreased (P <C0. 05). Compared with the model group,the wet-dry weight ratio,
myocardial cellular apoptosis rate, CK-MB, LDH, cTnl levels and Bax protein expression in the experimental
group 1 and 2 were decreased, while the levels of Bcl-2 protein expression, LVEF,LVFS,PGC-1 mRNA,NFR-
1 mRNA and NFR-2 mRNA were significantly increased (P <{0. 05). There was no statistically significant
difference in the above indicators between the experimental group 1 and 2 (P >>0. 05). Conclusion PPARS ag-
onist reduces the mitochondrial damage possibly through PGC-1/NFRs signaling pathway,thereby reduces the
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myocardial cellular apoptosis in mice and ameliorates MI/RI.

[Key words] PPARGS;mice; PGC-1;myocardial ischemia-reperfusion injury;apoptosis
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1/NFRs i #% 2 [ () 356 R 2E 47 7 0F 50, 50T HAe il i
MI/RI J7 I 9 AE AL, A )5 190 245 9 0 5% 4 44t 58 19
Ji 1A
1 #MetEF*E
1.1 %3

28 H C57BL/6N fa He /Iy il . SPF ¢, M. Tl A
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B4 i 98 -2 A (B-cell lymphoma-2 gene, Bel-2) &
A X 4K M (Bel-2-associated X protein, Bax) B i
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isoenzymes MB,CK-MB) . 5L 82 B, & 8 (lactate dehy-
drogenase, LDH) \ML45 % & 1(cardiac troponin I,cT-
nD) # 7]
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1.3.7 Western blot %48 % A =& & &k ik
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e HER N PR 1eG HRP FUik (90, Fi i & 45
WLl ECL 350 & bt SRR UG I L 43 #r .
1.3.8 PCR # M #48% mRNA & A

SRR e = WL 2L, B R AT 50 3 b B 2
B RNA(Trizol ), %F H 4l B 55 He B 2 I 46 )
CEEHNM SR % RNA 305 5 i cDNAL A B
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PCR IQ5TM 5 BUfF 5 [ R 4 , I X 10 BF 13 {6 K A - B
Ja ok 27 kAT M. Bractin L EBI Y 5'-
CCCATCTATGAGGGTTACGC-3', F 5l ¥ 5'-
TTTAATGTCACGCACGATTTC-3";PGC-1 I ¥#75]
¥ 5'-AGGCGGTGCTCGCTTGTG-3', Fes| ¥ 5'-
GGGATAGATAAAACAGGATGGGA-3"; NFR-1 I
Wa1¥ 5'- AATGTCCGCAGTGATGTCC-3", F sl
¥ 5'-GCCTGAGTTTGTGTTTGCTC-3'; NFR-2
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Wesl ¥ 5'-AGTGCACAGAAGAAAGCA-3', FiiE5l
¥ 5'-AACCACCCAATGCAGGAC-3,
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0.05),5C5 1.2 HAl | ik 22 R LG T2 8 L (P>



FTHREF2025F 9 AF 5455 9H
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WYL FE PPARS 5% 3 R BRUR 9 L B 85 LN TT 280 % A8
1A A AR AR bR B H (COX T .COX IV %)
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