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Establishment of a model for distinguishing glandular prodromal lesions
mixed with ground-glass nodules from micro-invasive adenocarcinoma

on CT based on artificial intelligence
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[ Abstract] Objective To establish an effective model for distinguishing glandular prodromal lesions
(PGL) mixed with ground-glass nodules (mGGN) {rom minimally invasive adenocarcinoma (MIA) on CT
based on artificial intelligence. Methods A retrospective analysis was conducted on the clinical and CT image
data of 180 patients with lung adenocarcinoma confirmed by surgical pathology and with CT manifestations of
mGGN in the First Affiliated Hospital of Wenzhou Medical University from January 2017 to June 2023,inclu-
ding 66 patients with PGL and 114 patients with MIA. Patients were divided into the training set (n =144)

and the test set (#=36) in an 8 : 2 ratio using a completely random method. The quantitative parameters and
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radiomics features of the lesions in CT images were automatically extracted using artificial intelligence soft-
ware (United Imaging Research Platform uRP). By incorporating the most obvious correlation features of
omics through dimensionality reduction, five machine learning classifiers were established, including logistic
regression (LR),support vector machine (SVM) ,Random forest (RF),Gaussian process (GP),and Decision
Tree (DT). The classifier with the training set highest area under the curve (AUC) was selected as the best
radiomics model,and output the result as radiomics score (Rad-score). The clinical information, CT morpho-
logical characteristics and quantitative data of the two groups were included in the multivariate logistic regres-
sion analysis to screen the independent influencing factors for effectively differentiating PGL and MIA,and a
clinical model was established. Finally,a comprehensive prediction model was constructed based on Rad-score
and clinical risk factors. The diagnostic performance of the three models was evaluated by using the AUC, sen-
sitivity, specificity and accuracy of receiver operating characteristic (ROC) curve. Results Eleven radiomics
features for distinguishing PGL from MIA were obtained through LASSO dimensionality reduction. Among
the five machine learning classifiers, GP has the best diagnostic performance,with AUC of 0. 865 in the train-
ing set and 0. 762 in the test set, respectively. Univariate and multivariate logistic regression analyses were
used for clinical feature screening. The clinical model was constructed by using the average CT value,average
long and short diameter,and solid partial long diameter of mGGN,and the AUCs of the training set and the
test set were 0. 870 and 0. 794, respectively. The comprehensive prediction model demonstrated superior diag-
nostic performance,with AUC, sensitivity, specificity, and accuracy in the training set being 0. 948,81. 1%,
91.2% and 87.5% respectively,while 0. 883,76. 9% ,91. 3% and 86.1% respectively in the test set. Conclu-
sion The comprehensive prediction model established based on the quantitative and omics feature analysis of
pulmonary nodules by artificial intelligence can well distinguish mGGN mixed with PGL from MIA on CT,
and can be used to guide clinical treatment decisions.
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