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基于人工智能鉴别CT表现为混合磨玻璃结节的腺体前驱病变
与微浸润腺癌的模型建立*
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  [摘要] 目的 基于人工智能建立鉴别CT表现为混合磨玻璃结节(mGGN)的腺体前驱病变(PGL)与微

浸润腺癌(MIA)的有效模型。方法 回顾性分析温州医科大学附属第一医院2017年1月至2023年6月经手

术病理证实且CT表现为mGGN的180例肺腺癌患者的临床和CT影像资料,包括PGL患者66例和 MIA患

者114例。采用完全随机法以8∶2的比例将患者分为训练集(n=144)和测试集(n=36)。使用AI软件(联影

科研平台uRP)全自动提取CT图像中病灶的定量参数及影像组学特征;通过降维纳入组学的最明显相关特征,
建立5种机器学习分类器,包括逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)、高斯过程(GP)及决策树

(DT),以训练集曲线下面积(AUC)最高的分类器作为最佳影像组学模型,并将其结果输出为影像组学评分

(Rad-score)。将两组患者的临床信息、CT形态特征及定量数据纳入多因素logistic回归分析,筛选有效鉴别

PGL和 MIA的独立影响因素,并建立临床模型。最终基于Rad-score和临床危险因素构建综合预测模型。采

用受试者工作特征(ROC)曲线的AUC、灵敏度、特异度和准确度评价三种模型的诊断性能。结果 通过LAS-
SO降维得到11个鉴别PGL与 MIA的影像组学特征。在5种机器学习分类器中,GP具有最佳的诊断效能,
其在训练集和测试集的AUC分别为0.865、0.762。单因素、多因素logistic回归分析进行临床特征筛选,使用

mGGN的平均CT值、长短径平均值和实性部分长径构建的临床模型,得到训练集和测试集的AUC分别为

0.870和0.794。综合预测模型表现出更优的诊断效能,在训练集中的 AUC、灵敏度、特异度、准确度分别为

0.948、81.1%、91.2%、87.5%;在测试集中的 AUC、灵敏度、特异度、准确度分别为0.883、76.9%、91.3%、

86.1%。结论 基于人工智能对肺结节定量及组学特征分析建立的综合预测模型能够较好地鉴别CT表现为

mGGN的PGL与 MIA,可用于指导临床治疗决策。
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  [Abstract] Objective To
 

establish
 

an
 

effective
 

model
 

for
 

distinguishing
 

glandular
 

prodromal
 

lesions
 

(PGL)
 

mixed
 

with
 

ground-glass
 

nodules
 

(mGGN)
 

from
 

minimally
 

invasive
 

adenocarcinoma
 

(MIA)
 

on
 

CT
 

based
 

on
 

artificial
 

intelligence.Methods A
 

retrospective
 

analysis
 

was
 

conducted
 

on
 

the
 

clinical
 

and
 

CT
 

image
 

data
 

of
 

180
 

patients
 

with
 

lung
 

adenocarcinoma
 

confirmed
 

by
 

surgical
 

pathology
 

and
 

with
 

CT
 

manifestations
 

of
 

mGGN
 

in
 

the
 

First
 

Affiliated
 

Hospital
 

of
 

Wenzhou
 

Medical
 

University
 

from
 

January
 

2017
 

to
 

June
 

2023,inclu-
ding

 

66
 

patients
 

with
 

PGL
 

and
 

114
 

patients
 

with
 

MIA.Patients
 

were
 

divided
 

into
 

the
 

training
 

set
 

(n=144)
 

and
 

the
 

test
 

set
 

(n=36)
 

in
 

an
 

8∶2
 

ratio
 

using
 

a
 

completely
 

random
 

method.The
 

quantitative
 

parameters
 

and
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radiomics
 

features
 

of
 

the
 

lesions
 

in
 

CT
 

images
 

were
 

automatically
 

extracted
 

using
 

artificial
 

intelligence
 

soft-
ware

 

(United
 

Imaging
 

Research
 

Platform
 

uRP).By
 

incorporating
 

the
 

most
 

obvious
 

correlation
 

features
 

of
 

omics
 

through
 

dimensionality
 

reduction,five
 

machine
 

learning
 

classifiers
 

were
 

established,including
 

logistic
 

regression
 

(LR),support
 

vector
 

machine
 

(SVM),Random
 

forest
 

(RF),Gaussian
 

process
 

(GP),and
 

Decision
 

Tree
 

(DT).The
 

classifier
 

with
 

the
 

training
 

set
 

highest
 

area
 

under
 

the
 

curve
 

(AUC)
 

was
 

selected
 

as
 

the
 

best
 

radiomics
 

model,and
 

output
 

the
 

result
 

as
 

radiomics
 

score
 

(Rad-score).The
 

clinical
 

information,CT
 

morpho-
logical

 

characteristics
 

and
 

quantitative
 

data
 

of
 

the
 

two
 

groups
 

were
 

included
 

in
 

the
 

multivariate
 

logistic
 

regres-
sion

 

analysis
 

to
 

screen
 

the
 

independent
 

influencing
 

factors
 

for
 

effectively
 

differentiating
 

PGL
 

and
 

MIA,and
 

a
 

clinical
 

model
 

was
 

established.Finally,a
 

comprehensive
 

prediction
 

model
 

was
 

constructed
 

based
 

on
 

Rad-score
 

and
 

clinical
 

risk
 

factors.The
 

diagnostic
 

performance
 

of
 

the
 

three
 

models
 

was
 

evaluated
 

by
 

using
 

the
 

AUC,sen-
sitivity,specificity

 

and
 

accuracy
 

of
 

receiver
 

operating
 

characteristic
 

(ROC)
 

curve.Results Eleven
 

radiomics
 

features
 

for
 

distinguishing
 

PGL
 

from
 

MIA
 

were
 

obtained
 

through
 

LASSO
 

dimensionality
 

reduction.Among
 

the
 

five
 

machine
 

learning
 

classifiers,GP
 

has
 

the
 

best
 

diagnostic
 

performance,with
 

AUC
 

of
 

0.865
 

in
 

the
 

train-
ing

 

set
 

and
 

0.762
 

in
 

the
 

test
 

set,respectively.Univariate
 

and
 

multivariate
 

logistic
 

regression
 

analyses
 

were
 

used
 

for
 

clinical
 

feature
 

screening.The
 

clinical
 

model
 

was
 

constructed
 

by
 

using
 

the
 

average
 

CT
 

value,average
 

long
 

and
 

short
 

diameter,and
 

solid
 

partial
 

long
 

diameter
 

of
 

mGGN,and
 

the
 

AUCs
 

of
 

the
 

training
 

set
 

and
 

the
 

test
 

set
 

were
 

0.870
 

and
 

0.794,respectively.The
 

comprehensive
 

prediction
 

model
 

demonstrated
 

superior
 

diag-
nostic

 

performance,with
 

AUC,sensitivity,specificity,and
 

accuracy
 

in
 

the
 

training
 

set
 

being
 

0.948,81.1%,

91.2%
 

and
 

87.5%
 

respectively,while
 

0.883,76.9%,91.3%
 

and
 

86.1%
 

respectively
 

in
 

the
 

test
 

set.Conclu-
sion The

 

comprehensive
 

prediction
 

model
 

established
 

based
 

on
 

the
 

quantitative
 

and
 

omics
 

feature
 

analysis
 

of
 

pulmonary
 

nodules
 

by
 

artificial
 

intelligence
 

can
 

well
 

distinguish
 

mGGN
 

mixed
 

with
 

PGL
 

from
 

MIA
 

on
 

CT,

and
 

can
 

be
 

used
 

to
 

guide
 

clinical
 

treatment
 

decisions.
[Key

 

words] 
 

lung
 

adenocarcinoma;proglandular
 

disease;microinvasive
 

adenocarcinoma;artificial
 

intelli-
gence;radiomics

  肺癌是世界范围内发病率与病死率最高的恶性

肿瘤,2022年我国新发肺癌约106.06万例,死亡

73.33万例,新发及死亡人数均居恶性肿瘤之首[1]。
肺癌中腺癌最为多见,根据《WHO胸部肿瘤分类(第
5版)》

 

,腺癌分为腺体前驱病变(precursor
 

glandular
 

lesions,PGL)、微浸润性腺癌(minimally
 

invasiveade-
nocarcinoma,MIA)和浸润性腺癌(invasiveadenocar-
cinoma,IAC)。PGL包括非典型腺瘤样增生(atypical

 

adenomatous
 

hyperplasia,AAH)和原位腺癌(adeno-
carcinoma

 

in
 

situ,AIS)[2]。PGL属于癌前病变,不需

立即手术治疗,可采取CT定期随访,当磨玻璃结节增

大、密度增高,出现实性成分或实性部分增多时,再考

虑是否手术切除,PGL术后5年生存率为100%;
MIA为孤立性小腺癌,需及时对亚肺叶进行切除(如
肺段或楔形切除术)[3-4]。肺腺癌在薄层CT上可表现

为纯磨玻璃结节(pure
 

ground-glass
 

nodule,pGGN)、
混合磨玻璃结节(mixed

 

ground-glass
 

nodule,mG-
GN)或实性结节。有研究显示 CT 检查中偶发的

mGGN
 

为恶性的概率约
 

63%[5],所以临床上对 mG-
GN的诊断倾向于 MIA或IAC,一般建议手术切除,
然而 在 临 床 工 作 中 PGL 有 时 也 表 现 为 mGGN;
ZHANG等[6]报道一组经肺穿刺病理证实的 mGGN

患者中PGL占比为21.3%。准确鉴别 mGGN中的

PGL可以避免患者不必要的心理压力与过度治疗。
目前,表现为mGGN的PGL与MIA在CT鉴别

诊断上有一定的难度,两者不仅在影像特征上存在相

互重叠,而且常规的二维平面手动测量也存在较大的

误差且重复性不佳。近年来人工智能(artificial
 

intelli-
gence,AI)在医学领域的运用更加深入,它可以深度学

习影像图像中隐含的特征信息、挖掘规律,并对未知数

据进行预测,在肺癌研究中具有广阔的应用前景[7]。故

本研究利用深度学习自动分割肺部结节,自动提取

mGGN的CT定量及影像组学特征,并结合CT形态特

征构建综合预测模型,以期鉴别诊断PGL与MIA。
1 资料与方法

1.1 一般资料

回顾性分析2017年1月至2023年6月在温州医

科大学附属第一医院经手术病理证实的肺腺癌患者。
纳入标准:(1)病理类型为PGL或 MIA,病理切片资

料保存完整,并可复阅;(2)CT上表现为 mGGN,结
节最大径≤3

 

cm;(3)临床和CT图像资料完整、清
晰。排除标准:(1)既往有肺癌或其他恶性肿瘤史;
(2)严重慢性阻塞性肺疾病或肺部感染;(3)CT检查

前接受过放化疗或靶向、免疫治疗等。最终180例肺
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腺癌患者纳入本研究,根据病理诊断结果分为PGL
组66例(其中AIS

 

59例)和 MIA组114例。本研究

通过温州医科大学附属第一医院临床研究伦理委员

会批准[审批号:临床研究伦审(YS2018)第(041)号]。
1.2 方法

1.2.1 检查方法

患者取仰卧位,双臂上举,头先进,采用Toshiba
 

Aquilion
 

ONE
 

320层、GE
 

LightSpeed
 

VCT
 

64层中

进行低剂量胸部CT扫描。检查前训练患者呼吸,在
吸气末屏气后行肺尖至肺底的连续扫描。扫描范围

包括肺尖至肺底的全部区域。扫描参数:管电压120
 

kV,管电流50~150
 

mAs,重建层厚为1.25(GE)或
1.00(Toshiba),重建间隔1.0

 

mm,螺距0.99~1.20,
矩阵512×512。
1.2.2 CT形态特征分析

由2名经验丰富的放射科医师在报告工作站上

以盲法对各个 mGGN 病灶的 CT形态特征进行评

估,主要观察的特征包括分叶征、毛刺征、空泡征、空
气支气管征、血管集束征及胸膜凹陷征。当意见不同

时由另1名具有15年影像诊断经验的副主任医师对

结果进行判定。
1.2.3 定量及组学特征筛选与机器学习

将所有图像上传至联影科研平台(uRP)对整个

肺结节进行全自动勾画并进行三维定量及影像组学

特征提取。获取定量特征包括肺结节的平均CT值

(HU)、质量(mg)、容积(mm3)、长径(mm)、短径

(mm)、长短径平均值(mm)及实性部分长径(mm)。
平台中影像组学利用广泛使用的Pyradiomics3.0.0
版(http://www.radiomics.io/pyradiomics.html)对
分割完成的肺部结节进行CT纹理特征提取。组学特

征采用Z 分数归一化对特征进行标准化处理,并使用

K 最佳、最小冗余最大相关、最小绝对收缩和选择算

子回归(least
 

absolute
 

shrinkage
 

and
 

selection
 

opera-
tor,LASSO)对高维特征进行降维,LASSO回归使用

5折交叉验证确定最优参数,以筛选得到最佳组学特

征。随后,建立5种常见的机器学习分类器,包括逻

辑回归(logistic
 

regression,LR)、支持向量机(sup-
port

 

vector
 

machine,SVM)、随机森林(random
 

for-
est,RF)、高斯过程(Gaussian

 

process,GP)和决策树

(decision
 

tree,DT)。选择训练集中受试者工作特征

(receiver
 

operator
 

characteristic,ROC)曲线中曲线下

面积(area
 

under
 

the
 

curve,AUC)最高的分类器作为

最佳影像组学模型,并将其结果转换为相应的影像组

学评分(radiomics
 

score,Rad-score)。
1.2.4 临床模型及综合预测模型构建

将两组患者单因素分析中P<0.05
 

的临床资料、
CT形态及定量特征纳入多因素logistic回归分析,以

筛选区分PGL与 MIA的独立危险因素,并建立临床

模型。为了进一步提升预测模型的准确性,建立基于

Rad-score和临床危险因素的综合预测模型。
1.3 统计学处理

采用SPSS26.0进行数据处理。对符合正态分布

的计量资料以x±s表示,两组比较采用独立样本t
检验。对不符合正态分布的计量资料以 M(Q1,Q3)
表示,两组比较采用 Mann-Whitney

 

U 检验。计数资

料以例数或百分比表示,两组比较采用χ2 检验或

Fisher确切概率法。对临床、CT形态及定量特征筛

选采用单因素及多因素分析,对各模型进行ROC曲

线分析,采用 AUC、灵敏度、特异度和准确度评价不

同模型的诊断性能。采用Delong检验比较不同模型

间的AUC。以P<0.05为差异有统计学意义。
2 结  果

2.1 CT特征

对180例CT表现为 mGGN的肺腺癌患者采用

完全随机法以8∶2的比例分为训练集144例和测试

集36例。在训练集中,MIA组和PGL组分叶征、空
气支气管征和胸膜凹陷征、平均CT值、质量、容积、长
径、短径、长短径平均值及实性部分长径间差异均有

统计学意义(P<0.05);在测试集中,仅质量、容积、长
径、短径、长短径平均值及实性部分长径在两组间差

异有统计学意义(P<0.05)。其余特征在两组间差异

无统计学意义(P>0.05),见表1。
2.2 特征筛选及模型构建

从每个肺结节内提取2
 

264个影像组学特征,通
过LASSO回归筛选得到11个鉴别PGL与 MIA的

组学特征。ROC曲线结果显示,GP具有最佳的诊断

效能,其在训练集和测试集的 AUC分别为0.865和

0.762。多因素分析显示mGGN的平均CT值(OR=
2.524,95%CI=1.287~4.853)、长 短 径 平 均 值

(OR=2.639,95%CI=1.472~4.493)和实性部分长

径(OR=3.796,95%CI=1.896~7.513)是鉴别

PGL和 MIA的独立影响因素,并以此建立临床模型,
其在 训 练 集 和 测 试 集 的 AUC 分 别 为 0.870 和

0.794,见表2。
进一步基于Rad-score与上述危险因素构建的综

合预测模型在训练集中的 AUC、灵敏度、特异度、准
确度分别为0.948、81.1%、91.2%、87.5%,在测试集

中分别为0.883、76.9%、91.3%、86.1%;DeLong检

验结果显示,在训练集中,综合预测模型的AUC高于

组学模型 GP和临床模型(Z=3.519、3.221,P<
0.05),在测试集中综合预测模型的AUC也高于组学

模型GP和临床模型(Z=2.631、3.412,P<0.05),而
组学模型 GP与临床模型比较差异无统计学意义

(Z=1.437、1.738,P>0.05),见表2、图1。
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表1  训练集和测试集中临床及CT影像特征比较

项目
训练集(n=144)

PGL组(n=53) MIA组(n=91) t/χ2/Z P

测试集(n=36)

PGL组(n=13) MIA组(n=23) t/χ2/Z P

年龄(x±s,岁) 53.47±11.49 55.46±10.97 -1.032 0.304 53.62±15.751 57.39±7.178 -2.300 0.408

性别[n(%)] 0.201 0.654 0.358 0.549

 男 15(28.3) 29(31.9) 7(53.8) 10(43.5)

 女 38(71.7) 62(68.1) 6(46.2) 13(56.5)

分叶征[n(%)] 45(84.9) 88(96.7) 6.607 0.019 12(92.3) 23(100.0) 1.820 0.361

毛刺征[n(%)] 5(9.4) 17(18.7) 2.213 0.137 2(15.4) 7(30.4) 1.003 0.438

空泡征[n(%)] 2(3.8) 10(11.0) 2.283 0.211 2(15.4) 4(17.4) 0.024>0.999
 

血管集束征[n(%)] 1(1.9) 1(1.1) 0.152 0.700 0 1(4.3) 0.581>0.999

空气支气管征[n(%)] 3(5.7) 22(24.2) 8.003 0.005 1(7.7) 5(21.7) 1.180 0.385
 

胸膜凹陷征[n(%)] 8(15.1) 33(36.3) 7.370 0.007 2(15.4) 8(34.8) 1.558 0.270
 

平均CT值(x±s,HU) -529.70±98.91 -488.00±119.52 -2.119 0.036 -522.65±147.33 -500.00±132.21 0.447 0.658

质量[M(Q1,Q3),mg] 0.38(0.23,0.61) 0.67(0.40,1.08) -3.962<0.001 0.52(0.23,0.73) 0.79(0.49,2.16) -2.158 0.031

容积[M(Q1,Q3),mm
3]

671.91
(402.87,972.60)

1
 

140.80
(615.50,1

 

140.80)
-2.578 0.011

776.87
(495.27,1

 

198.50)
1

 

508.39
(915.90,4

 

695.97)
-2.639 0.014

长径(x±s,mm) 12.18±4.07 14.99±5.25 -3.354 0.001 12.78±3.58 17.10±6.33 -2.255 0.031

短径(x±s,mm) 9.55±2.97 11.30±3.60 -3.019 0.003 9.72±1.80 13.20±4.77 -2.516 0.017

长短径平均值(x±s,

mm)
10.86±3.34 13.14±4.29 -3.326 0.001 11.25±2.47 15.15±5.38 -2.458 0.019

实性部分长径(x±s,

mm)
3.39±1.60 7.99±4.46 -7.236<0.001 3.78±1.75 7.35±3.02 -3.900

 

<0.001

表2  训练集和测试集中不同模型诊断性能的比较

模型
训练集

AUC 灵敏度(%) 特异度(%) 准确度(%)

测试集

AUC 灵敏度(%) 特异度(%) 准确度(%)

LR 0.833
 

66.0
 

82.4
 

76.4
 

0.732
 

76.9
 

73.9
 

75.0
 

SVM 0.817
 

60.4
 

83.5
 

75.0
 

0.712
 

61.5
 

87.0
 

74.8
 

RF 0.819
 

84.3
 

83.4
 

73.8
 

0.706
 

61.5
 

73.9
 

69.4
 

GP 0.865
 

76.6
 

89.0
 

77.9
 

0.762
 

69.2
 

82.6
 

77.9
 

DT 0.854
 

64.2
 

85.7
 

76.8
 

0.575
 

56.2
 

69.6
 

61.1
 

临床模型 0.870
 

71.7
 

83.5
 

78.2
 

0.794
 

71.5
 

86.0
 

77.8
 

综合预测模型 0.948
 

81.1
 

91.2
 

87.5
  

0.883
 

76.9
 

91.3
 

86.1
 

  A:训练集;B:测试集。

图1  不同预测模型在训练集和测试集的ROC曲线
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3 讨  论

随着CT成像技术的普及与发展,肺结节的检出

率越来越高,特别是磨玻璃结节,目前关于其临床诊

断及治疗尚未达成统一共识,过度手术治疗较为常

见。既往关于AIS与 MIA鉴别的研究文献较少,且
少有关于对 CT表现为 mGGN 的类型进行单独研

究;而在广泛用于评估肺结节恶性风险的Brock模型

中,mGGN是一个重要的癌症预测因子,为腺癌的一

种独特亚型[5,8],识别mGGN中的良性病变具有特别

的临床意义。陈妙勤等[9]分析CT表现为 mGGN的

AIS与
 

MIA,发现两者在胸膜凹陷征、空气支气管征

及结节的直径、磨玻璃成分CT值比较差异有统计学

意义(P<0.05);而王欢等[10]报道AIS与
 

MIA在分

叶征、毛刺征、胸膜牵拉征、空气支气管征、结节CT
值、实性成分CT值、实性部分最大径及结节最大径差

异均有统计学意义。可见除了不同的研究结果存在

差异,基于医师的视觉观察及人工测量存在主观因素

的影响且人工可测量的定量参数亦不全面,对鉴别

PGL与 MIA的可靠性有限。
近年来以深度学习为代表的AI技术在医学领域

得到了应用与发展,基于CT图像的肺结节筛查、分析

和诊断已进入精准化、智能化时代[7,11]。同时,AI可

进行精准的病灶分割、定量参数的测量和敏感的影像

组学特征识别,也为准确预测肺结节的病理侵袭性提

供了更丰富和可重复的客观指标[12]。已有研究显示,
影像组学联合临床特征构建的预测模型对鉴别 mG-
GN中的IAC具有较好的诊断效能(AUC为0.72~
0.88)[13-14],但以前的研究大多采用人工分割,耗时

长,不利于临床应用。本研究采用的联影uRP软件,
是一款商用的人工智能科研平台,能够一站式提供全

自动化的病灶分隔、定量测量、影像组学特征提取及

深度学习等技术,为本研究与今后临床实际运用提供

了硬件支持。
 

本研究中,训练集的 MIA 组和PGL组在分叶

征、空气支气管征和胸膜凹陷征、平均CT值、质量、容
积、长径、短径、长短径平均值及实性部分长径之间的

差异均有统计学意义。本研究结果与王欢等[10]报道

相符,MIA更易出现分叶征、空气支气管征、胸膜凹陷

征等形态特征,并且结节的大小、CT值及实性部分长

径等定量数据存在差异;本研究基于联影uRP软件还

获取并验证了结节质量与容积参数的鉴别价值。多

因素logistic回归分析显示,mGGN的平均CT值、长
短径平均值和实性部分长径是鉴别PGL与 MIA的

独立影响因素,而分叶征、空气支气管征和胸膜牵拉

或凹陷征等因素被剔除,这可能与 MIA、PGL的肿瘤

细胞侵袭性和病灶内纤维化程度不高或样本量有限

有关,也提示了定量参数比形态特征对鉴别CT表现

为mGGN的 MIA与PGL更有价值。本研究结果与

ZHANG等[15]与SUN等[16]的研究相符,结节的大小

及mGGN的实性部分长径与肿瘤的浸润等级高度相

关;也与LI等[17]的研究结果一致,亚实性结节的平均

CT值越高,恶性的可能性更高。本研究据此建立的

临床模型在训练集和测试集的AUC分别为0.870和

0.794,诊断效能均较高。LIU等[18]近期对CT表现

为亚实性结节(包括pGGN 和 mGGN)的 MIA 与

PGL影像图像采用3D
 

slicer软件手动分割结节并行

定量分析,同样对患者的临床因素与CT形态和定量

特征通过单因素分析和多因素logistic回归分析,显
示分叶征、实性部分长径、CT值和实性占比为区分

MIA与PGL的独立影响因素,建立的临床模型在训

练集和测试集的AUC分别为0.837和0.796,这与本

研究结果基本相似,但是分叶征存在差异,推测原因

是本研究中分叶征在表现为 mGGN 的 MIA 组和

PGL组中占比较高,分别为96.7%和84.9%,从而降

低了分叶征的鉴别价值。
ZHU等[19]对129例表现为pGGN的患者行组

学研究,建立预测 MIA和PGL的组学模型,其在训

练集和验证集的AUC值分别为0.884、0.872。目前

还未有基于 AI鉴别CT表现为 mGGN 的PGL与
 

MIA的研究。本研究基于深度学习AI对CT表现为

mGGN目标结节进行深度挖掘和量化分析,共提取

2
 

264个影像组学特征,通过LASSO回归筛选,降维

得到11个鉴别PGL和 MIA最明显相关的纹理特

征,其中灰度级带矩阵(gray
 

level
 

size
 

zone
 

matrix,
GLSZM)和灰度级长矩阵(gray

 

level
 

run-length
 

ma-
trix,GLRLM)特征所占比例最高,主要反映病灶的表

面粗糙程度、病灶内灰度分布及局部非均匀性,其值

越大通常代表肿瘤异质性越高;这与ZHU等[19]研究

结果存在差异,其研究中筛选的影像组学特征中灰度

依赖矩阵(gray
 

level
 

dependence
 

matrix,GLDM)和
灰度共生矩阵(gray

 

level
 

co-occurrence
 

matrix,GL-
CM)所占比例最高,可见 mGGN具有独特的组学特

征,有必要与pGGN区分并分类研究。在本研究中建

立的5种机器学习分类器中,GP具有更高的诊断效

能,其在训练集和测试集的 AUC分别为0.865和

0.762。可见,基于组学特征构建的模型对鉴别CT表

现为mGGN的 MIA与PGL一样具有较高的诊断效

能。为了进一步提高预测模型的可解释性和准确性,
本研究基于Rad-score和临床危险因素建立了综合预

测模型,ROC曲线结果显示综合预测模型相较于组

学模型或临床模型,表现出更优的诊断效能。
本研究存在一些局限性:(1)本研究为回顾性单

中心研究,数据可能存在选择性偏倚;(2)样本量不

大,未来需要收集多中心数据来验证模型的泛化能

力;(3)本研究中的CT图像由不同品牌CT机器扫描

所得,可能存在一定的偏差。
综上所述,基于 AI对肺结节定量及影像组学特

征分析建立的综合预测模型能够较好地鉴别CT表现
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为mGGN的PGL与 MIA,其诊断效能较单一的临床

模型或组学模型更高,可用于临床日常工作、指导治

疗决策。
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