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Study on the mechanism of InRNA HOTAIR targeting TSC1 to regulate
podocyte injury in diabetic nephropathy
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[Abstract] Objective To explore the regulatory effect of long non-coding RNA HOX transcript anti-
sense RNA (InRNA HOTAIR) targeting tuberous sclerosis complex 1 (TSC1) on podocyte injury in diabetic
nephropathy (DN). Methods Mice podocyte MPC5 were divided into 6 groups:the control group, the high
glucose group (the HG group) ,the HG+si-NC group,the HG+si-HOTAIR group,the HG+si-HOTAIR+
sh-NC group,and the HG+si-HOTAIR+sh-TSC1 group. qPCR was used to detect the levels of InRNA HO-
TAIR and TSC1 mRNA. Cell viability was detected by cell counting kit-8 (CCK-8) ,and apoptosis was detec-
ted by flow cytometry. ELISA was used to detect the levels of inflammatory factors[11.-6, tumor necrosis fac-
tor-a (TNF-a) ] and the levels of oxidative stress indicators[ reactive oxygen species (ROS), malondialdehyde
(MDA) ,superoxide dismutase (SOD) ] were detected by corresponding reagent kit. Results Compared with
the control group, the levels of InRNA HOTAIR, apoptosis rate, IL-6, TNF-a, ROS and MDA in the HG
group were significantly increased (P <C0. 05), while the levels of TSC1 mRNA, cell viability and SOD were
significantly decreased (P <C0. 05). Compared with the HG+si-NC group,the levels of InNRNA HOTAIR, ap-
optosis rate,1L-6, TNF-a,ROS and MDA in the HG+si-HOTAIR group significantly decreased (P <C0. 05),
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the levels of TSC1 mRNA, cell viability and SOD were significant increased (P <C0. 05). Compared with the
HG+si-HOTAIR+ sh-NC group, the levels of apoptosis rate, IL-6, TNF-a, ROS and MDA in the HG + si-
HOTAIR+sh-TSC1 group were significantly increased (P <C0. 05),the levels of TSC1 mRNA, cell viability
and SOD were significantly decreased (P<C0. 05). Conclusion Silencing InRNA HOTAIR can target TSCI1 to

regulate the activity,apoptosis rate,inflammatory level and oxidative stress levels of podocyte injury in DN,

thereby alleviating podocyte damage in DN.
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rosis complex 1;podocyte
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AR HEVE T . 78 2 0E R o A v, AL 7= 2 22 P R

DN & 4 i i) A FR 25 5 DN B & B 2% DA 60
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