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[Abstract] Cerebral ischemia-reperfusion injury (CIRI) is an important component of ischemic stroke,
specifically referring to the phenomenon where reperfusion exacerbates tissue damage after the restoration of
blood flow. The underlying mechanisms involve factors such as free radical damage, calcium overload,and in-
flammatory damage. Currently, there are no particularly effective treatments for this injury clinically. Phos-
phatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling is a classical cellular pathway that regulates
downstream substrates through Akt phosphorylation to regulate cell growth, differentiation, and apoptosis.
Studies have shown that PI3K/Akt is involved in regulating multiple forms of programmed cell death inclu-
ding apoptosis within the organism,and this pathway plays a role in antioxidant stress and anti-inflammatory
responses during the process of combating CIRI. This review summarizes recent advances of PI3K/Akt path-
way in CIRI regulation,this paper provides new ideas and reference for basic and clinical research.
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Akt 3l P ASE 6 RE | O I 0 OB PR s Th ke HE A
A e 5ME L2 M CIRI 4 st /. A
WEAKF SRS CIRT M g i 4 A B VIR . I
EHHXEH 1 B4 3(microtubule-associated proteins
light chain 3, MAPILC3, i Fx LC3) J& 41 il [ W A9 4
WY Z —,CIRL 7 LC3-11/LC3-T e H MK HE 1
(Beclin-1) FihK P L8 HE 26 % B 46 ) 78 5 T
41 ff4 (bone marrow mesenchymal stem cells, BM-
SCs) B i A B A T LC3- 11 /LC3- I HfE A1 Beclin-1
FeIRK P H AT $iE m H R o R O SR Y B R 1k
Akt(p-AkO) il p-mTOR 1Y 3R 3k, IF H X Fh #8 #] L
A PG PISK/ Alet 3 f% o 200 1o gy >R 453475

PI3K & H i1 p85 Hl p110 F K A4 1 i) 57 — 5
A TA 28 0] Bk 22 1 % 24 R B4 (receptor tyrosine ki-
nase, RTK) 5 G & H { §X 52 /& (G protein-coupled
receptors, GPCRs) i » 3R 48 2= 41 g 55 I, 5 % g 1ok
WLEE — #% R [ phosphatidylinositol (4, 5) bisphos-
phate, PIP2 J# 2 ft. & PIP3, PIP3 TJ 4 % & Pleck-
strin [RIR S5 AR 2 a0 Akt A 3-B R JUL W 4R 8 1
E H 4B 1 (pyruvate dehydrogenase kinase 1,PDK1)
FMRE L SEAT FURE S A S . TR, B R A
ik 71 2 H [F] & 9 (phosphatase and tensin homolog,
PTEN) A Il 2 L A% £ W PR 4-B FR M Cinositol
polyphosphate-4-phosphate type [l B, INPP4B) 1] i
b HE PIP3 25 W AL 7 i) 4 47 PISK % . Akt fE
N —Fh 22 IR/ IR = PR A AR AP TR T
DA B2 Wl R b A5 5 T 4% 08 4 4 ML 2 g L R i IR
LG R R R R 1 o-Myce 2 % H F-E2 M 5&
A F-2 (nuclear factor erythroid 2-related factor 2,
Nrf2) . #4175 5 A 7 1 Chypoxia inducible factor-1,
HIFD %, WF R, & Ak 35 M 40 i 09 bt A 1k fg
g, H 32 5 g A 7 A R R 4 1T (nicotinamide
adenine dinucleotide phosphate hydrogen, NADPH )
4B H K (glutathione , GSH) B A= 1% & ¥4 31 & Ak W
BWAEM . Akt i8] DL H 2 85 72 /b NAD 3 i (NAD
kinase, NADK) 1Y Ser44 ,Ser46.Serd8 i &', H
[i] 22 ] 455 2 R R R IS 0 = W R I 1 (adenosine
triphosphate, ATP) HI g™, (H HARHL K 1 4 BA B .
2 CIRI

A 10 P A T R B e A R e BBk R R K
T2 £ B 0 E i A rh i 4] e e ol P B A b
80 %6 ~85 %0 . i 1 P N dole i 79RO 4% i AR K
P45 AELA B ) e i g AR AN AN 2% 5 SR 25 40 i P &
LA HL 1% 338 R0 T W B 1 1 A O L 3 2 S SO AR P Ui
BAGE P (Ca® ) B8 Z 40 A /K i 5L 28 40 it 25 #4) 1 1 3R
. KT R BT, a7 e B i 3% Al b P E v R
ST REE— A R I L S S B R % A
IR R R 2 B A R 3L TR A SR
T A B AR SR AL B R B A

R I 5 RN Ay G 4 2 A B 0 A A OB R AR 2 R
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JE AR IRIE IR D) 87 BR . ATP A= Bk 20 , 20 f S 1 14
BT (Na -8 B (K O-ATP [ ) 68 9 55 . 40 i
BB U 7 A K W TR A R Ca® ' Y i
PEREIN, HL Ca™" B9 A A B0 2D, 5 B4 f R Ca®
W22 5 W SORAR T 0 . 55 A, W R T B O IS
S r R R N BRIV B AR G 5 R A0 M PV . TR
HORTAAUT L AE T T A MR A A Rl AR R
(leukotriene, LT) , LT 5%MA RS PG ™ AW C3
B WA FH W 5| O 5 A O v R R 4 L A R A
KA KA H AR — s A A, A
SR B TIPS IS F TR NG IS R TR N VR Y S A
A 5 3 375 1 G, 3 R 4 8 B A i (matrix metallo-
proteinase, MMP) #{ ¥ i 5 3 i 7K fff i I 85 1 5 )2
Rl B8 45 P 8 A8 BRI 2 I I Il A 5 R C blood
brain barrier, BBB)™" . Ji§i it IfiL J5 » 28 fi iy B 4% 4 R
P TRE RO 5 2 fih [ B r ) 2 20 T 5 4 RN 4 2 R 32 1k
PTG 3 Ca® " 2 2 I A 2R 0, DA T 3 350 4 i At
ToE AR R
3 PIBK/AktB#S 5iEERK CIRT B HLH

LA PISK/ Akt 38 % 75 fixi 4% v 45 48k 19 #F 52 i
%, — Ny PISK/ Akt 3 #% 38 i Bt 240 B 0 Tk f 97
A, o 7 AR T 0B A I B R AR R S I A 2 R A
Yyog st # b AR T
3.1 w@pBAT/ER

SR T A AR A PN U AN RO T A R A i
i o D IR G A | L B O s A N N
I FPERG I A2 HE A LR C(eyto-O BT, cyto-C 3
1% 2 Bt K & &R 1K A B8 (caspase)-9, FF i 1E caspase-
3.6.7, AN 2040 M JA T . B4 i vk 1 R -2 (B-
cell lymphoma 2,Bcl-2) & —FHr i T8 1, & AL T4
RS, B 8 3k 0 AR O T A AN A O
K F Bax Fl Bel-2 #5470 H F Bak) 3 4 47 4 AL 7 Ji 14
SEHREME L B7 1E cyto-C Mg PE %A (reactive oxygen spe-
cies, ROS) 1Y B i, M BH 1k 94 12 17 % 19 9 Bk
RV WS I Akt 8BRS IS, T LAGE 5 R
ToAH G HR 1136 4k 2 e K 4 8 1 B5-3 (cleaved-caspase-
3)FIF T I8 45 K F Bel-2., Bax 4 75 =X 30 il 41 fg 94
7ML XU SR R B, Y A 2 0T DL s o
PI3K/ Akt i % %35 F Bel-2 ik, A B A2 8 7 K
kR & 2 A . FAN 2550 I 7E {4 41
G 4% JE R (chlorogenic acid, CGA) Xt AN # 1L%  iZ
4ii fft HBMEC %005 #13F / B #E 1 (oxygen glucose dep-
rivation/reperfusion, OGD/R) i 71 J& BY 36 J7 %R &
B, CGA P LAA R H OGD/R 3 A1 40 58 T~ 5 1
LA A B, HLE— 25 5 B X A P 2 T2 S0 i
WY PISK/ Akt 3 i 400 ) 40 i Jd 7ok 58 il
3.2 HEAE AR

7 CIRT 45 475 v fisi 5 A S 0 4K 5 25 7 A K i
9 ROS, MM 5 1Y ROS 2 0K P I8 1 4 ALk Jit - £
7 AR N AR L T PISK/ Ak il AT DL KOS
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AH T A8 A il 41 i s A A . B, Ak B 5 BT
Nrf2, DT 98 $ 48 Ak Bl 9 3% 3k, A 466 43 e 1 Bk 41
YW (glutathione peroxidase, GPX) i & L9 1 1k
fiff (superoxide dismutase, SOD) . i & 1tk & i (cata-
lase, CAT) 55, X SEEGAEAS 1 B 1 19 ROS, Wi
Bi%E . ZHANG %55 i ik gy R 52 56 0F 5 & B
BARFEA CIRT B9 M 28 O/ 37 4 T 38 i 4 i ROS B
LB AR R T A2 HE PISK A Akt B2 1L, filf
Nrf2 JE A 20 M A%, JE — 20 800 T Ui i 20 38 I 480 -1
(heme oxygenase-1, HO-1) % 4 48 Ak Bfd 32 35 S J 4% 41
PRI A 07 o T R ik A A o R A B ot R A AL
il B IE 5T H oI T R S A T O T R B 4 AT Al
X i 41 20N % (malondialdehyde, MDA) | fiti k.24 75
‘A & (chemical oxygen demand, COD) #E 4750871 & B .
FEAH ] PI3K-o Ml 515 » MDA .COD ik KT+
WA H 4518« 76 CIRT #5143, PISK/ Akt 5@ #% 7] LA
U258 S A IO A 1 DTG S B 2 DR AP
3.3 @ asER

I 2 S o AR 5 A R R 2
NEE Mg it B2 . BT R B, R ik A g 2 —
PR 2L BE BRI B M. ZRORLAAR 1V IR 1 R iR
SR A S B ok A o e 5 A R A AR, DA B 1k
ROS jif FE A R #2806 T2 S e Fr A i e 5 &2
FEE, A W2 A WA I A (autophagy related
gene, Atg) IS AY Atg EEH B TE T, Atgl3 FEH M
RBICCI/Atgl7 EHIE I 5 Y5 22 AR/ 75 AR
FEHMEZ 5% 1(mechanistic target of rapamycin
complex 1, mTORCO M B AEH , 25 A W1 91 &5 B
B, diffuirh iy LC3- 1 5 8 A Bk £ B e (phosphati-
dylethanolamine, PE)Z5 &, gL JE i i 28 LC3-11 4
SVEPREY ORI E T AR . B EAKIE S B g
VS X G, FE BB R K R B0 E R T R AR
PI3K-o M. HE40 ] [ 0 M PISK-B 3F J& 42 iF 11 05 LA iy
i ROS, Akt ] LL3Z ROS 19 5 Wi B4 i i o4 % % bt B
Wit , HC3E S 30 B IR L m TORCL JF 4141
Wi BE P 3% 7k ok & ¥ /E . mTORCL f1 mTORC2 7
H2E ROS JKF T #0 [ w L B £E = ROS KF T,
mTORC2 °f DL3@ & [ W 4 30k 4f ff o 2, 2=
20200 3 30 G T R I = Y 4R 5T 0 L E (myo-
cardin) 1 K& S HF A(myocardin-related transcrip-
tion factor A, MRTF-A) 53 H W M 1fij 2% f% CIRI K
BR8P LR . 9T R B, 5 G 2
BE MBI LY A, 1 O i 3R 38 MRTE-A 1895 5 19 /&
IR LI A1 K B 28 D) e T 43 | I AR AR A R R A K
RO R A AT T A 0 ] MRTE-A 3R 3k 18 9 3¢
I L EJLAS 48 bR Y W s TRIAYZH, iF— 20
T B, v 35 MRTEF-A 2 14 Bl 2 20 Jifd 48 190 25 44
WO AR R i A VA A . I WA DG B 1 R kKO I 1B
m THAIA . mTOR, Akt @ B2 £k 7K - B & 5 T 5 Y
.5 HEEMEIE A & ULKL B 1k /K7 B 85
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TR 2T I A Bl X it 2235 MRTFE-A 7] D)@
it PI3K/Akt/mTOR/ULKI i %% S A W 3 ik 4%
CIRI $17, 2=k kN miR-202-5p A AL TE L WL Bk
I P A v & PR PR MR L #E CIRT A Al % A 2R 1)
YEFH ., B N2a 4 i1 #:47 OGD/R 4t B 5 &k ¥ 3 2 3k
miR-202-5p R4 /35 40 M A7 06 2, U8 /)N il 458 A 1 AL, 4
T T B WAL R B A B UG R F 4E Ceukaryotic
initiation factor 4E, eIF4E) K FEAK A W& 14> 1
LC3-1I/LC3-1 e fE. Xk #E O (forkhead box O,
FoxO) ZE M i 02 8 2 — 57 20 JE P9 3 0l 3R 3K 1Y
5T 4% FoxO1,FoxO3.,FoxO4 #l FoxO6 45,
A LA S T A OG5 S L 4 A0 R T,
FoxO3 B i M B e ] 32 . A WF 58 & B FoxO3 &
57 CIRI #94% F i 72, & PISK/Akt i@ iy B2 F
e O 4 B Sk U R LR R 0 A 2R AR X
CIRI A X 8% fE M . DENG 255" 5l 3o 44 4 4h 52 36
K PI3SK/Akt/FoxO3 i # ] L i 8 % A Wk 10
il S AL B A T A0 B FE T OF Ho7E CIRT & 4% 56
HEVE R, XOFPVE A B R Ol 0T Akt #0E FoxO3 B iR
ek S EL Y
3.4 RXER SR

WFoe £ W, RAEH CIRI 9 & 4. & B %M
S CIRI Al i S 1 48 P9 R 200 B 36 4 i ot B %
KL TSR I A A2 FIFTS AR 38 2 A9, 389
S8 P RE LIV 5 51 I VB I K b ANk 2 oo, A
5% % KT 3% 2, 2 (scutellarin, Scu) EL A 1 &2 ¥ 7k
AT AR F Nrf2 #8647, B HO-1 3k, 58
SOD #HHEF# ] ROS 74, XIE 459 & 3 Scu i
S0 Nrf2 A5 F R T F-kB 2k 35 £ Bl 5 1A 25 F A
W p-Akt KR, 3 H PISK/ Akt 410 41 50 ] L H
Wi Scu X Nrf2 #2507 D g A2 vE/E A . /0N e o 4 i
R R WL s A FE IR AR AR E T S 5 4
FE A 28 R GE AR S L AR T 7 i i O 45 e EEIR
/0N S T 20 L2 A Ry Ak AR 8 ML 3R Y AR 4T
& M2 Fe B H = A 1) G 2 R 1 7 5 0 gk I 1) 4k &
PG S5 5 A 5 I C BRI L AN BIE Y kB ML
TR 7N J52 5 240 AR 0 A G o 46k & 45 405, i M2 BRI JRE SR
200 e U 55 B i A b S e Th R A2 . A A B A
IR A A A R YT N S B AN s T RE S S
PG A5 1 P EE A A B AR, WANG &0 i) af LA
T /0 J5e 5 240 /5 4 ) 3 A e DA T 9 5T CIRT
W SR SV SRR . AT R A 1A PISK #0041 51
ZSTK474 T HiktE C57BL/6 /N, T 5 5 %) IR 4
Fb A5, I~ 15 7 /0N e I 4 L/ I 0 i ) i B
TR D, FRUL AR g PR ) M2 R R, Bk TR E
PRI 08 T 90 RN, 32 T T /N BUBE 7R (%) #f 22 T fig
/0 T IR AE T AL . I ELIZ A 5T & B A% PISK
MHF TS, Akt Bl mTORCL B85 12 1k 7K R A%
83 R 80 R K, A PR 4 T RE 258 i PISK/
Akt/mTORCI EEE S 1Y,
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4 55

8 I P 2 v R A DR B A 2 £ B, CIRT J2& H:
rh e E S S0 BR T, CIRI (9 & 9% L 4%k & 4.
PI3K/Akt i B 7E i L T EEAEH . 38 i X5 4 ¢
WEoE MR FE , PISK/ Akt i %76 CIRT H i 18 FH L 2
TR AT, A R i bl 2R A0 B A T L b R Ak R I A I g
S5 B 5 % P T ) B B BRI RS . R, %0
B TR 22 A G EE R e AR R Y A Y T T
ML, RECHEZ R AR, B PISK/Ake 38 #% #£
CIRT AN [7] 55 BB B AN [ 95 A FH B i A 4 4 0%
FEHLHIA FER AR R . KRR AT DLk — 20 R 45
Tzl g AE CIRL i sh 28 9k e A8 4k . & F g 4 H
SN A A 38 B A8 U PR FIE . (R, A 5
4 him s i PR A AL WF 5%, 4 Bl H AR I RGN
Sy e A TG A IR T T RE BT T 1]
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