论著・基础研究 doi:10.3969/j.issn.1671-8348.2017.13.003

阿糖胞苷通过自噬途径影响 K562 细胞增殖凋亡的实验研究

罗 昊¹,孟 赞¹,刘泽洪²,陈晓露3△

(1. 乐山职业技术学院人体解剖学与组织胚胎学教研室,四川乐山 614000;2. 三峡医药高等专科学校病理学教研室,重庆万州 404120;3. 乐山职业技术学院病理学教研室,四川乐山 614000)

[摘要] 目的 探讨阿糖胞苷(Ara-C)通过自噬途径影响人红白血病 K562 细胞株增殖、凋亡的作用及可能的机制。方法 采用 CCK-8 法检测不同浓度的 Ara-C 作用 24 h 和 48 h 后细胞增殖抑制率;流式细胞术(FCM)检测凋亡率和周期; Hoechest 染色观察细胞核染色质的形态,吖啶橙染色观察细胞酸性自噬小泡; Western blot 检测 p38 和 p-p38 蛋白表达变化; RT-PCR 和免疫荧光检测自噬凋亡相关基因和蛋白的表达水平。结果 CCK-8 检测发现不同浓度的 Ara-C 均能抑制 K562 细胞增殖,并呈浓度和时间依赖性; FCM 检测显示 Ara-C 能增加细胞的凋亡和将细胞周期阻滞在 S 期; Hoechest 染色发现 Ara-C 处理 K562 细胞后呈凋亡形态改变;吖啶橙染色发现 Ara-C 组细胞绿色荧光增强,细胞出现大量的酸性自噬小泡; RT-PCR 检测发现 Ara-C 上调自噬关键基因 Beclin-1、LC3A 和 LC3B 表达; Western blot 检测发现 Ara-C 增加磷酸化 p38 表达; 免疫荧光检测发现 Ara-C 增加 LC3 表达。结论 Ara-C 能够激活 p-p38 介导的 K562 细胞发生自噬,进而抑制细胞增殖和促进细胞凋亡作用。

[关键词] 阿糖胞苷;白血病;自噬;细胞凋亡

「中图分类号 R733.7

「文献标识码」 A

「文章编号 1671-8348(2017)13-1736-04

Experimental study on influence of cytarabine on K562 cells proliferation and apoptosis by autophagy pathway

Luo Hao¹, Meng Zan¹, Liu Zehong², Chen Xiaolu³△

- (1. Department of Human Anatomy, Histology and Embryology, Leshan Vocational and Technical College, Leshan, Sichuan 614000, China; 2. Department of Pathology, Three Gorges Medical College, Chongqing 404120, China;
 - 3. Department of Pathology, Leshan Vocational and Technical College, Leshan, Sichuan 614000, China)

[Abstract] Objective To investigate the effect of cytarabine (Ara-C) on proliferation and apoptosis of human erythroleukemia K562 cell line through autophagy pathway and its possible mechanism, Methods The cellular proliferation inhibiting rate after different concentrations of Ara-C acting for 24,48 h was detected by CCK-8; the cell cycle and apoptosis were detected by flow cytometry(FCM); the chromatin morphological changes in nucleus were observed by Hoechst staining; the cell acidic autophagy vesicles were detected by acridine orange staining; the expression changes of p38 and p-p38 proteins were detected by Western blot. The expressions of autophagy apoptosis related gene and protein were examined by RT-PCR and immunofluorescence. Results The CCK-8 results found that different concentrations of Ara-C could inhibit the proliferation of K562 cells with dose- and time-dependent manners. FCM detecting indicated that Ara-C could increase apoptosis and could arrest the cell cycle at S phase; Hoechest staining showed that K562 cells had typical apoptotic morphological changes after Ara-C treating; the Acridine orange staining revealed that Ara-C caused the inclease of the green fluorescene in cells of the Ara-C group, and the cells appeared a great number of acidic autophagy vesicles; RT-PCR results showed that Ara-C up—regulated the expression of autophagy key genes Beclin-1, LC3A and LC3B; Western blot results showed that Ara-C increased the expression of phosphorylated p-p38. Immunofluorescence results showed the expression of LC3B was significantly enhanced, Conclusion Ara-C can activate p-p38 mediated K562 cells to generate autophagy, then inhibit the cell proliferation and promotes apoptosis.

[Key words] Ara-C; leukemia; autophagy; cell apoptosis

红白血病是以红、白(主要是粒细胞)两系恶性增生的白血病,其发病机制为造血干细胞分化障碍,细胞周期调控紊乱,细胞凋亡受阻的恶性造血系统肿瘤^[1]。阿糖胞苷(Ara-C)是白血病化疗的常见药物,其药理机制是抑制细胞内 DNA 合成,阻滞细胞增殖的嘧啶类代谢药物^[2]。现临床运用的 Ara-C 有 3 种剂量,分别为高、中、低剂量,其治疗的效果有差异,低剂量 Ara-C 能诱导白血病细胞分化,高剂量 Ara-C 能促进细胞凋亡作用和增强其他化疗药物的敏感性^[3]。自噬受到自噬相关基因调控,具有调节细胞的生存及凋亡的功能,也参与了肿瘤发生、发展的过程^[4]。自噬基因的大量激活可导致细胞自噬增

加,最终引起自噬性细胞死亡(也称Ⅱ型程序性细胞死亡)^[5]。 因此,抗肿瘤药物可以通过自噬途径杀伤肿瘤细胞。

1 材料与方法

- **1.1** 材料 人红白血病 K562 细胞株购自上海 ATCC 细胞库。每次取对数生长期的 K562 细胞以 1×10^{9} 个/L 接种于 10% 胎牛血清的 RPMI 1640 培养基中,在 37 ℃,5% CO₂ 饱和湿度下培养,每 $1\sim2$ d 传代和换液。
- 1.2 仪器与试剂 Ara-C 购自美国 Sigma 公司,用 PBS 配制成 0.1 mol/L 的储存液,一20 ℃条件下避光保存,实验时用含血清的培养液稀释成工作液。胎牛血清、RPMI 1640 培养基(美

基因	上游引物	下游引物
LC3-A	CCT TCT TCC TGC TGG TGA A	GTT TCC TGG GAG GCG TAG AC
LC3-B	CCG GCT GTG TAG TCA GGG TA	CCG GCT GTG TAG TCA GGG TA
Beclin-1	CAA CTG AGA CCG TGG AGA GG	AGC CCT GTG CGA GAC TGT AG
Atg3	CAC CTA GTC CAC CAC TGT CCA	CGC CAT CAC CAT CAT CTT CT
Atg5	GCC ATC AAT CGG AAA CTC AT	AGC CAC AGG ACG AAA CAG C
Atg7	TTC CAA GGT CAA AGG ACG AA	ACT CCA TCT GTG GGC TGC TA
Atg12	GTA GAG CGA ACA CGA ACC ATC	GGG AAG GAG CAA AGG ACT GA
GAPDH	CAT CAA GAA GGT GGT GAA GA	CGT CAA AGG TGG AGG AGT GG

表 1 实时荧光定量 PCR 相关基因引物序列

国 Hyclone 公司), CCK-8 试剂盒(日本同仁化学研究所), Hoechest 染液(江苏碧云天生物公司), 吖啶橙(美国 Sigma 公司), p-38、p-p38、LC3B 抗体(美国 Cell Signaling Technology), 荧光显微镜(日本 Nikcon 公司), 酶标仪(550 型)、Western blot 电泳仪、PCR 仪(美国 Biorad 公司), 流式细胞仪(BD公司)。

1.3 方法

- 1.3.1 CCK-8 法 培养对数生长期的 K562 细胞,以 1×10^4 个/孔接种于 96 孔板中。分别加入不同浓度的 Ara-C(0~7.5 μ mol/L),培养 24、48 h后,每孔加入 $10~\mu$ L CCK-8 检测液,轻轻摇匀,孵育 2 h后,用酶标仪(波长 450 nm)检测每孔吸光度 (A)值,并计算 Ara-C 的细胞增殖抑制率和半数抑制浓度 (IC50)。
- 1.3.2 FCM 检测周期 培养对数生长期的 K562 细胞,调整 细胞浓度分别至 $5 \times 10^8/L$,接种于 6 孔细胞培养板中。分别 加入不同浓度的 Ara-C(0、2.5、5.0 μ mol/L)作用 48 h后,分别 收集各组细胞,用预冷 PBS 洗涤 1 次,加入 75% 乙醇于 4 ℃固定过夜,去除固定液后,加入 0.5 mL 含 PI 和 RNAase A 的 DNA 染液,室温避光孵育 30 min,流式细胞仪分析细胞 DNA 水平,根据 DNA 水平计算细胞周期,重复实验 3 次。
- 1.3.3 FCM 检测凋亡 培养对数生长期的 K562 细胞,调整 细胞浓度分别至 5×10^8 个/L,接种于 6 孔细胞培养板中。分别加入不同浓度的 Ara-C(0、2.5、5.0 μ mol/L)作用 48 h 后,分别收集各组细胞,用预冷 PBS 洗涤 1 次,4 $^{\circ}$ C 1 $200\times g$ 离心 5 min。检测前离心去除固定液,加入碘化丙啶(PI) 和 Annexin V,置于冰上染色处理 30 min,每组细胞 1×10^5 个,行流式细胞仪检测,此实验重复 3 次。
- 1.3.4 吖啶橙染色 K562 细胞用 Ara-C(5.0 μ mol/L)作用 24 h后,分别收集各组细胞,用预冷 PBS 洗涤 1 次。用新配制 的吖啶橙(2 μ /mL),37 ℃避光孵育 15 min,用 PBS 漂洗 3 次后,调整细胞浓度,取一滴细胞悬液滴到玻片上,待细胞沉积到 玻片上时,吸去上层液体,封片置于荧光显微镜下观察酸性的 自噬小泡,实验重复 3 次。
- 1.3.5 Hoechst 染色 K562 细胞用 Ara-C(5.0 μ mol/L)作用 24 h后,分别收集各组细胞,加固定液室温固定 20 min,用预 冷 PBS 洗涤 1 次。直接加入 Hoechst 染色液避光、室温染色 15 min,PBS 洗涤 3 次,再加 PBS 制成细胞悬液,调整细胞浓度,滴在载玻片上,封片,观察,采图,实验重复 3 次。
- 1.3.6 RT-PCR 参照试剂盒说明书进行, Trizol 提取细胞织总 RNA。采用 TaKaRa 的反转录酶试剂和反转录 cDNA。应

用 TaKaRa 的 SYBR [[试剂, PCR 反应体系为 $10~\mu$ L。检测自 噬重要基因的 mRNA 水平。引物由上海生工生物公司提供,引物序列见表 1。以 GAPDH 为内参基因,用目的基因与 GAPDH 的起始拷贝数比值表示目的基因的相对表达量,实验 重复 $3~\chi$ 。

- 1.3.7 Western blot K562 细胞用 Ara-C(5.0 μ mol/L)作用 24 h后,分别收集各组细胞,预冷 PBS 洗涤 2 次,用 RIPA 蛋白 裂解液提取细胞总蛋白,4 ℃离心后取上清液。BCA 法测得蛋白浓度,沸水中煮沸至蛋白完全变性后,保证每孔中有 40 μ g 待测蛋白样品,行 SDS-PAGE 电泳,电转移至 PVDF 膜,5%脱脂奶粉室温封闭 2 h后,分别加入抗体 p38、p-p38 和 β -Actin 按1:1 000稀释抗体,4 ℃孵育过夜;以 1:2 000 稀释的辣根过氧化物酶标记二抗,再用 TBST 漂洗 3 次,每次 10 min 置于脱色摇床上;最后在保鲜膜上滴入 ECL 化学发光液,在暗室进行 X 胶片曝光,洗片,胶片晾干后。扫描胶片,Quantity One 软件定量分析,此实验重复 3 次。
- 1.3.8 免疫荧光 K562 细胞用 Ara-C(5.0 μ mol/L)作用 48 h后,收集细胞,用固定液在室温下固定细胞 30 min 后,用 0.3% Triton X-100 破膜处理 10 min,PBS 漂洗 3 次。在 37 ℃ 湿盒内用 5% 山羊血清封闭 30 min 后,分别加入一抗 LC3B (1:200),4 ℃孵育过夜后,于 37 ℃复温 1 h,PBS 漂洗 3 次,再加入 1:500 稀释的红色荧光标记山羊抗兔 IgG(H+L),室温避光孵育 40 min;最后加入 PI 作用 1 min 后,PBS 漂洗 3 次,封片,显微镜观察并采图,实验重复 3 次。
- 1.4 统计学处理 数据用 SPSS 22.0 软件进行统计分析,计量资料用 $\overline{x} \pm s$ 表示,多组均数单因素方差分析,组间两两比较用 LSD 法,以 P < 0.05 为差异有统计学意义。

2 结 集

- 2.1 Ara-C 抑制 K562 细胞增殖 CCK-8 测细胞增殖抑制实验显示,不同浓度的 Ara-C(0.625、1.25、2.5、5.0、7.5 μ mol/L) 处理 K562 细胞 24 h 和 48 h 后,各组细胞的增殖明显受到抑制,并呈时间和浓度依赖性(见图 1)。其中 Ara-C(7.5 μ mol/L)作用 24 h 时,细胞增殖抑制率达 45.93%±2.47%,作用 48 h 时达 66.10%±4.50%,而 Ara-C 作用 K562 细胞 48 h 时,半数抑制率为 5 μ mol/L 左右。
- 2.2 Ara-C 阻滞 K562 细胞周期在 S 期 不同浓度的 Ara-C $(2.5,5.0~\mu\text{mol/L})$ 处理 K562 细胞 48 h 后,FCM 检测结果显示,随药物浓度的增加,Ara-C $(2.5,5.0~\mu\text{mol/L})$ 与空白对照组相比, G_0/G_1 和 G_2/M 期细胞比例降低,差异有统计学意义

(P < 0.05); Ara-C(2.5、5.0 μ mol/L)与空白对照组相比,S期细胞比例增加,差异有统计学意义(P < 0.05),见表 2。

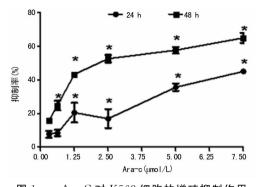


图 1 Ara-C 对 K562 细胞的增殖抑制作用

表 2 Ara-C 对 K562 细胞周期的影响($\overline{x}\pm s$,n=3)

Ara-C(μmol/L)	G_0/G_1	G_2/M	S
0	42.96±3.46	13.02±3.44	53.02±3.48
2.5	36.11±1.97	7.29 ± 3.71	56.60±2.30
5.0	31.16 ± 2.30	3.36±3.23	65.48±4.00

2.3 Ara-C 诱导 K562 细胞凋亡 不同浓度的 Ara-C(2.5、5.0 μ mol/L) 处理 K562 细胞 48 h 后,FCM 检测结果显示随 药物浓度的增加细胞早期和晚期凋亡数量明显增多,其早期凋亡率分别为 5.09% ±0.87%、11.00% ±1.76%,且随着浓度的增高,早期凋亡率增高,分别与空白对照组(3.18% ±0.52%)相比,差异有统计学意义(P<0.05);晚期凋亡率分别 为5.78% ±1.02%、18.32% ±2.16%,且随着浓度的增高,晚期凋亡率增高,分别与空白对照组(1.19% ±0.42%)相比,差异均有统计学意义(P<0.05),见表 3。

表 3 Ara-C 对 K562 细胞凋亡的影响($\overline{x}\pm s$,%)

Ara-C(μmol/L)	早期	晚期
0	3.18±0.52	1.19±0.42
2.5	5.09 ± 0.87	5.78 ± 1.02
5.0	11.00 ± 1.76	18.32 ± 2.16

2.4 Hoechst 染色检测细胞凋亡 Ara-C(5.0 μ mol/L)诱导 K562 细胞 24 h 后,用 Hoechst 染色显示,细胞核出现染色质浓缩、核碎裂、核边集的细胞凋亡现象,并且细胞发出蓝色荧光较空白对照组细胞强,说明 Ara-C 能诱导 K562 细胞凋亡(图 2)。

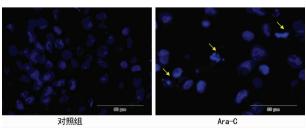
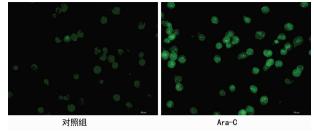
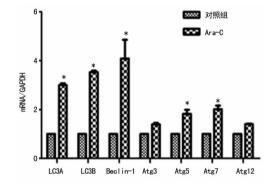
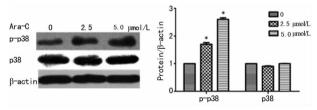


图 2 Hoechst 染色检测细胞凋亡

2.5 Ara-C 诱导 K562 细胞自噬 Ara-C(5.0 μ mol/L)诱导 K562 细胞 24 h 后,用吖啶橙染色后,观察细胞内的酸性自噬 泡,细胞内绿色小泡代表酸性自噬小体。Ara-C 诱导后,与对

照组比较,细胞内酸性的自噬小泡明显增加,而对照组细胞绿色的自噬小泡基本看不见。


图 3 吖啶橙染色检测细胞自噬

2.6 Ara-C 影响自噬重要基因的表达 RT-PCR 检测结果如图 6 显示,与对照组比较,K562 细胞经 Ara-C(5.0 μ mol/L)作用 24 h后,自噬重要基因(Atg3、Atg12)在细胞中变化不明显,而自噬最重要的基因 Atg5、Atg7、Beclin-1、LC3A、LC3B 表达上调,差异有统计学意义(P<0.05),其中自噬关键基因 Beclin-1、LC3A、LC3B 表达上调尤为明显。

*:P<0.05,与对照组比较。

图 4 RT-PCR 检测 Ara-C 影响自噬重要基因的表达

*:P<0.05,与空白对照组比较。

图 5 Western blot 检测 Ara-C 影响 MAPK 通路

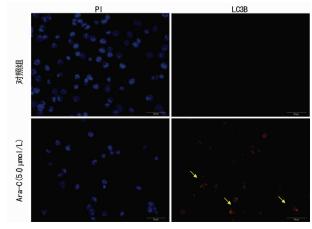


图 6 免疫荧光检测 LC3B 的表达

2.7 Western blot 检测 Ara-C 对 MAPK 通路的影响 West-

ern blot 结果如图 6 显示,与对照组比较,K562 细胞经 Ara-C $(2.5,5.0 \, \mu \text{mol/L})$ 作用 24 h 后。与空白对照组相比,随浓度的升高,p38 表达无明显差异,然而 p-p38 表达随 Ara-C 浓度增加其表达水平明显升高,差异有统计学意义(P < 0.05),说明 Ara-C 能激活 MAPK 信号通路。

2.8 免疫荧光检测 LC3B的表达 与对照组比较,K562 细胞经 Ara-C(5.0 μ mol/L)作用 24 h后,自噬重要蛋白 LC3B表达主要在细胞质中,图中可见 Ara-C 作用后,细胞质中的 LC3B表达增加,说明 Ara-C 能诱导细胞自噬(图 6)。

3 讨 论

临床实践证明, Ara-C 在高、中、低 3 种不同剂量治疗急性髓性白血病有不同的疗效,其中大剂量 Ara-C 的使用会对机体产生极大的伤害[3]。本实验采用了 CCK-8 法检测 Ara-C 对人红白血病 K562 细胞增殖的影响。结果表明 Ara-C 能有效抑制 K562 细胞增殖,但是高剂量是并没有极大改变 Ara-C 对白血病细胞的增殖,为临床上运用大剂量的 Ara-C 不能增加疗效提供体外实验依据。Ara-C 是嘧啶类抗代谢药物,能阻滞细胞周期在 S 期,其药理机制是阻止细胞 DNA 合成,从而阻滞细胞增殖^[2]。FCM 结果显示, Ara-C 可将 K562 细胞周期阻滞在 S 期,提示 Ara-C 可能通过细胞周期阻滞来抑制 K562 细胞增殖。

细胞自噬和凋亡密切相关,凋亡的早期,细胞出现应激反应,会出现自噬^[5]。自噬异常与肿瘤的发生发展关系密切,可以从不同的生物学行为影响肿瘤的进程,其中有细胞周期、增殖、凋亡、耐药、血管生成及肿瘤的治疗等方面的调控^[6]。文献^[7]研究报道,自噬和细胞凋亡的关系存在两面性,维持细胞生存和促进细胞死亡。为了探讨 Ara-C 对白血病细胞自噬凋亡的关系,笔者运用了吖啶橙染色,发现加药组早期细胞出现酸性的自噬泡增多,RT-PCR 结果显示自噬关键基因(Beclin-1、LC3A 和 LC3B)的表达均升高,证明了 Ara-C 能诱导白血病细胞发生自噬。Ara-C 也能促进细胞的凋亡,FCM 和 Hoechst染色无论从数量上还是从形态上都说明了 Ara-C 能够促进 K562 细胞的凋亡。本实验结果显示了不同浓度的 Ara-C 可以诱导 K562 细胞自噬,也可以诱导细胞凋亡,证明 Ara-C 能够通过自噬途径抑制 K562 细胞增殖,促进细胞凋亡。

自噬的分子诱导机制复杂且具有高度保守性,MAPK 参与调节自噬活性,从而在肿瘤的发生发展过程中发挥重要作用。在肿瘤药物中JNK、ERK 和 p38 的磷酸化水平都发生改变,激活 p38 可以激活细胞自噬和凋亡[7-8]。本文将研究的重心转移到 p38 这个可以调节细胞死亡和自噬的关键因子,Western blot 实验证明 Ara-C 能改变细胞中磷酸化 p38 的水平,这说明 Ara-C 能激活 MAPK 信号通路。

LC3B是自噬关键蛋白,其含量在一定程度上反映了自噬

活性^[9-10]。实验运用免疫荧光检测 LC3B 时,发现 Ara-C 能够增加 LC3B 的表达。还有 FCM 和 Hoechst 染色无论从数量上还是从形态上都说明了 Ara-C 能够促进 K562 细胞的凋亡,这说明 Ara-C 能够通过自噬途径诱导 K562 细凋亡。

综上所述, Ara-C 在体外能够抑制白血病细胞增殖, 阻滞细胞周期和诱导凋亡, 其机制可能是通过激活 MAPK 信号通路, 调控细胞自噬, 从而抑制白血病细胞增殖和促进细胞凋亡。

参考文献

- [1] Musch T, Oz Y, Lyko F, et al. Nucleoside drugs induce cellular differentiation by caspase-dependent degradation of stem cell factors [J]. PLoS One, 2010, 5(5):107-126.
- [2] 陈丽韵,贾培敏,童建华,等.阿糖胞苷诱导白血病细胞株 U937 自噬作用的实验观察[J].诊断学理论与实践, 2013,12(2):185-188.
- [3] 陈姣,王晓冬,王春森.不同剂量阿糖胞苷对急性髓性白血病缓解后巩固治疗的疗效分析[J].临床血液学杂志,2016,19(3);219-223.
- [4] Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword [J]. Science, 2004, 306 (5698):990-995.
- [5] Klionsky DJ. Autophagy [J]. Current Biol, 2005, 15(8): 282-293.
- [6] Meijer AJ, Codogno P. Signalling and autophagy regulation in health, aging and disease [J]. Mol Aspects Med, 2006, 27(5):411-425.
- [7] Ma Q, Chang Z, Wang W, et al. Rapamycin-mediated mTOR inhibition reverses drug resistance to adriamycin in colon cancer cells [J]. Hepato-Gastroenterology, 2015,62(140);880-886.
- [8] 郭晓,潘崚,侯兰芬,等. ERK 和 P38 信号转导途径对慢性髓系白血病细胞周期的调控作用[J]. 中国实验血液学杂志,2007,15(2):242-247.
- [9] Moscat J, Diaz-Meco MT. p62 at the crossroads of auto-phagy, apoptosis and cancer [J]. Cell, 2009, 137(6): 1001-1004.
- [10] Colecchia D, Rossi M, Sasdelli F, et al. MAPK15 mediates BCR-ABL1-induced autophagy and regulates oncogene-dependent cell proliferation and tumor formation [J]. Autophagy, 2015, 11(10): 790-802.

(收稿日期:2016-11-20 修回日期:2017-01-08)

《重庆医学》对临床研究论文医学伦理学要求

凡投本刊的涉及人的生物医学研究论文,作者应说明所在用的试验程序是否经过伦理审查委员会(单位性的、地区性的或国家性的)评估,注明批准号。涉及患者(受试者)的应签订知情同意书。

《重庆医学》编辑部