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miRNA-26a #l§] ox-LDL 4 &/ HAECs AT 1E R BV HI 5 3=
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[(#ZE] H# %A miR26a £ ox LDL A% A &4/t HAECs A w4 /F R A LA s, Hix KA RRKREG AL
1% %5 JE 5 & & (ox-LDL) £ 4k 9848 B T HAECs @ f € vk 3 (MTT) #= TUNEL % & # 7 ox- LDL 4 HAECs J& fm 64 % 1 5
AE,ZFLTREHM RS (QRT-PCR) M ox-LDL 48 i HAECs J& t0 e F miR-26a 84 & & K F. £ HAECs P it % & miR-
26a mimic, MTT #= TUNEL 3% & #4 0 ox-LDL ¥/ & ta i g 7 fe ] = & . M2 % b Z B4R % & & pMIR-PTEN # 3'UTR, #

%k By AN S E miR-26a 9 FAM Fe A B, gRT-PCR #= % § Jf ¥ i& ik (Western blot) 4 5] # @] PTEN # mRNA #= %
fgujcjto %R ox-LDL # %A% HAECs #m ety Pt = fo w8 =, 5 LE4& T HAECs 208 % miR-26a fl‘];fgiiﬂi-'?o it
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Study on the mechanism of miRNA-26a inhibiting ox-LDL-mediated apoptosis of HAECs
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[Abstract] Objective To investigate the role of miR-26a in ox-LDL-mediated apoptosis of HAECs in endothelial cells and its
mechanism. Methods Various concentrations of ox-LLDL were added in HAECs culture. Cell cytotoxicity and apoptosis were moni-
tored by MTT and TUNEL assay, and expression level of miR-26a examined by qRT-PCR. Overexpression of miR-26a mimic in
HAECs,MTT and TUNEL staining were used to detect the activity and apoptosis of ox-LDL. The 3' UTR of luciferase reporter
vector pMIR-PTEN was constructed and the predicted target gene of miR-26a was identified by luciferase activity assay. QRT-PCR
and Western blot were used to detect the mRNA and protein expression of PTEN. Results ox-LLDL could mediate the toxic death
and apoptosis of HAECs cells, and decrease the expression level of miR-26a in HAECs cells. Overexpression of miR-26a mimic
could inhibit the cytotoxicity and apoptosis of ox-LLDL cells after HAECs. Transfection of miR-26a mimics significantly inhibited lu-
ciferase activity (P<C0. 05). The expression of mRNA and protein in HAECs cells was significantly down regulated by transfection
of miR-26a analog (P<C0. 05). Conclusion MiR-26a can inhibit the cytotoxicity and apoptosis of ox-LLDL cells after HAECs inhibi-
tion,and the possible mechanism of action is to down regulate the expression of PTEN. The study suggests that miR-26a may be a
potential target for the treatment of atherosclerosis related to apoptosis.
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1.1.2 % 84 1% .DMEM £ 37 3 (25 [ hyclone A7),
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g 3'UTR S 4% # 2 ( 13 %88 A 7). PTEN,GAPDH — 4
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1.2.2 & & S0nf G s R B (QRT-PCR) 4% 8 TagMan
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B T8 e £ K miR-26a Ml T ox- LDL Xf
HAECs 4fi fid 8 79 5 343 S 4 41 : Control 40 ,ox-LDL 41 ,
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ox-LDL+miR-26a mimics 41 .ox LDL+miR-NC 41 , % 41 }; 3%
24 h J5 AL BT 5 [E AT .
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#] pMIR-PTEN ) 3'UTR 4, miR-26a 1545 # pMIR-PTEN
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Dura Extended Duration Substrate g 37 &b 3 3 g G I {2,

1.3 GEil2Abs  SRA SPSSI8. 0 A7 B ab # . R A
Xt ¢ KB £ 5. L P<0.05 NEFHAF R

2 % 7
2.1 ox-LDL X% HAECs 4 §fg 1% ¥ . 98 1= & miR-26a (¥ 5 i
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7R ¥ 4 miR-26a mimics 1 pMIR-PTEN i 3'UTR % 5% )G 5%
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X 45492, 8% PTEN & miR-26a [0 3 (& 3B),
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caspase RN HE LA F M. miRNAs B 7% £k S 5H#E
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