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[Abstract] Objective
CD4" Th cell differentiation and expression of inflammatory cytokines of mouse. Methods

spleen of C57bl/6 mouse and cultured. Ad-SOCS3 were transfected into the CD4" Th cells.
CD4" Th cells. RT-PCR were used to detect the mRNA expression,and Western blot were used to detect the protein expression of

To investigate the effect and mechanism of adenovirus vector mediated SOCS3 gene transfection in
The CD4" Th cells were isolated from
PHA was used for culturing with the
cytokines. Results Compared with the control group,the gene and protein expression of T-bet,IL-2,IFN-y,STAT4 and IL-12Rp2
in the transfected group were significantly down-regulated, the gene and protein expression of SOCS3, GATA-3,11.-4,1L-6,11.-10
and STAT6 were significantly up-regulated(P<Z0. 01). Conclusion The results indicate that SOCS3 gene transfection can up-regu-
late SOCS3 mRNA and protein expression in the CD4" Th cells,down-regulate the JAK/STAT pathway,inhibition of Thl cell dif-
ferentiation,and down regulation of inflammatory cytokine gene and protein expression,and indirectly promote Th2 cell differentia-
tion,and up the corresponding inflammatory cytokine gene and protein expression.
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