• 临床研究 •

31 例 B 型血友病患者凝血因子 \ 基因突变研究

刘丹娟¹,李莉艳^{2‡},李 强³,孙 竞⁴,钟 梅²,罗深秋^{1△} (南方医科大学:1.细胞生物学教研室/骨与软骨再生重点实验室;2.南方医院妇产科; 3.南方医院检验科;4.南方医院血液科,广州 510515)

摘 要:目的 研究 B型血友病患者的凝血因子(F) [X基因的突变类型与分布。方法 采集 31 例血友病 B患者外周静脉血,提取 DNA,对 F[X基因的 8 个外显子及其侧翼序列进行 PCR 扩增并测序。结果 31 例血友病 B患者共检出 34 种突变,其中 1 例为三重突变,6 例为双重突变,另外发现新突变 13 种。结论 B型血友病的 F[X基因突变分散,呈高度异质性。31 例 B型血友病患者的 F[X基因上均发现有序列改变,为 B型血友病患者基因缺陷的分子机制提供了证据,发现了 13 种新突变,丰富了 F[X基因突变谱。

关键词:血友病 B;因子 [X;基因突变

doi:10.3969/j.issn.1671-8348.2012.12.009

文献标识码:A

文章编号:1671-8348(2012)12-1168-03

Study on gene mutations of factor IX gene in 31 hemophilia B patients

Liu Danjuan¹, Li Liyan^{2#}, Li Qiang³, Sun Jing⁴, Zhong Mei², Luo Shenqiu^{1Δ}

(1. Department of Cytobiology/Key Laboratory of Bone and Cartilage Regeneration, Southern Medical University, Guangzhou, Guangdong 510515, China; 2. Department of Gynecology and Obstetrics, Nanfang Hospital, Guangzhou, Guangdong 510515, China; 3. Department of Laboratory Medicine, Nanfang Hospital, Guangzhou, Guangdong 510515,

China; 4. department of hematology, Nanfang Hospital, Guangzhou, Guangdong 510515, China.)

Abstract:Objective To study the mutation types and distribution of FIX gene in hemophilia B (HB) patients, Methods Peripheral blood samples were collected from 31 HB patients, and genomic DNA extracted was amplified by PCR to do the gene sequencing, including 8 exons and their flanks sequence. Results Thirty-four independent mutations were detected and identified in these 31 HB patients, with 1 triple-mutations sample and 6 double-mutations samples. Among these thirteen mutations were novel and never reported before. Conclusion Mutations of FIX gene in HB patients presented a high heterogeneity for dispersibility. Each of 31 HB patients has the sequence changes provided some evidences for the molecular mechanism of genetic flaw in HB patients. The 13 new-founded mutations enrich the FIX gene mutations spectrum.

Key words: hemophilia B; factor [X; mutation

血友病是一组 X 连锁隐性遗传的出血性疾病,临床上常见的有 A 型血友病(HA)和 B 型血友病(HB)两型,分别是由于凝血因子(F) III和 F IX 基因突变所引起。在男性血友病患者中,HA 占 $80\%\sim85\%$,而 HB 仅占 $15\%\sim20\%$,在男性中的发病率大约为 $1/30~000^{[1]}$,女性患者罕见。HB 基因突变具有明显的异质性,可发生在 F IX 基因外显子、内含子、启动子及其侧翼序列的任何位置^[2]。目前已知的 F IX 基因突变类型包括点突变、缺失、插入等。

本研究利用 PCR 法及 DNA 测序技术对 31 例 HB 患者进行 FIX 基因突变检测,对于明确 FIX 基因突变机制有重要意义,且丰富了 FIX 基因突变谱。

1 资料与方法

- 1.1 一般资料 31 例 HB 患者均来自本院血液科及妇产科门诊,FIX活性测定均小于 5%。
- 1.2 研究方法 采集 HB 患者外周血 2 mL,以乙二胺四乙酸 (EDTA)抗凝,采用外周血 DNA 提取试剂盒(美国 Life 公司) 提取 DNA。根据 FIX 基因序列 (Gene Bank K02402),参照文献[3]设计并合成 8 对扩增引物(表 1),引物由上海英骏生物技术有限公司合成。

PCR 反应总体积为 $50~\mu$ L,加入上游和下游引物各 $5~\mu$ mol (终浓度为 $0.1~\mu$ mol/L),4 种 dNTP 各 $5~\mu$ mol (终浓度为 $0.1~\mu$ mol/L)

mmol/L),5 μ L 10×Taq PCR Buffer(100 mmol/L Tris-HCl, 15 mmol/L MgCl₂ 和 500 mmol/L KCl, pH 8. 3), 2 U Taq DNA聚合酶(TAKARA公司),基因组 DNA 50~200 ng。 PCR 反应在美国 PE 公司的 9700 型热循环仪上进行。测序工作由上海英骏生物技术有限公司完成。

表 1 引物序列

外显子	引物名称	序列
Exon1	HB1F HB1R	5'-CCCAFTCTCTCACTTGTCC-3' 5'-CCTAGCTAACAAAGAACAGT -3'
Exon2&3	HB2F HB2R	5'-AGAGATGTAAAATTTTCATGATGTT -3' 5'-GCAGAAAAAACCCACATAAT -3'
Exon4	HB3F HB3R	5'-CTACAGGGGAGGACCGGGCATTCTA -3' 5'-AGTTTCAACTTGTTTCAGAGGGAA-3'
Exon5	HB4F HB4R	5'-CATGAGTCAGTAGTTCCATGTACTTT -3' 5'-TGTAGGTTTGTTAAAAIGCTGAAGTT -3'
Exon6	HB5F HB5R	5'-TTTAAATACTGATGGGCCTG -3' 5'-GTTAGTGCTGAAACTTGCCT-3'
Exon7		5'-AAGCTCACATTTCCAGAAAC-3' 5'-TGGGTTCTGAAATTATGA -3'

[△] 通讯作者, Tel:(020)61648208; E-mail: Luoshen888@163. com。

[#] 共同第一作者。

续表1 引物序列

外显子	引物名称	序列
Exon8-1		5'-TAAGAATGAGATCTTTAACA -3' 5'-CTAAGGTAGTGAAGAACTAA -3'
Exon8-2		5'-GAAGAGTCTTCCACAAAGGG-3' 5'-AAGATGGGAAAGTGATTAGTTA -3'

2 结 果

31 例 HB 患者通过 DNA 测序均检测到了突变位点。检测结果显示,FIX 基因的突变位点分散无热点区,突变类型也不同。本研究中共发现了 34 种突变,其中 1 例为三重突变,6 例为双重突变,此外还发现 13 种新突变。31 例 HB 患者均发现基因突变,其基因突变发生的碱基改变、具体部位(基因碱基序列编号采用 Yoshitake 方法^[4])、引起的氨基酸变化和是否为 CpG 突变热点见表 2。

表 2 31 例 HB 患者 F X 基因突变

序号	突变部位	位置	氨基酸变化	CpG
1	6364. C>T 192. A>G	Exon24 Ivs1. 75	CGG-TGG(R-W) Polymorphism	Y
2	6374. G>A	Exon21	AGG-AAG(R-K)	
3	30939. T>A#	Exon8. CD317	CTG-CAG(L-Q)	
4	17764. C>T 6320. T>A#	Exon5. 117 Ivs1. 6202	CTT-TTT(L-F) Acceptor Splice	
5	30917. T>G#	Exon8. CD310	TAC-GAC(Y-D)	
6	10454. T>C#	Exon4. CD113	TCC-CCC(S-P)	
7	31133. C>T	Exon8. 338	CGA-TGA(R-Stop)	Y
8	20519. G>A	Exon6. 180	CGG-CAG(R-Q)	Y
9	31152. T>C	Exon8. 344	ATC-ACC(I-T)	
10	17698. T>C	Exon5. 95	TGC-CGC(C-R)	
11	6375. G>T	Exon21	AGG-AGT(R-S)	
12	30150. G>A	Exon7. 233	GCA-ACA(A-T)	Y
13	17677. T>C 6828. C>T#	Exon5. 88 Ivs3. 126	TGT-CGT(C-R) Polymorphism?	
14	20461 GCTGAAACCA#	Exon6. CD205	Fs	
15	-6. G>C 6640. G>A# 29753. A>G#	Exon135 Ivs2. 151 Ivs6. 9187	None/Promoter Polymorphism? Polymorphism?	Y
16	30961 GCTAAACA #	Exon8. CD325	Fs	
17	6443. G>A 30321. G>T#	Exon2. 23 Ivs7. 168	TGT-TAT (C-Y) Polymorphism?	
18	192. A>G	Ivs1.75	Polymorphism	
19	192. A>G	Ivs1.75	Polymorphism	
20	10470. G>T	Exon4. 73	TGT-TTT(C-F)	
21	6392. T>C	Exon2. 6	TTG-TCG(L-S)	
22	31278. G>T	Exon8. 386	GGT-GTT(G-V)	
23	⋉缺乏		Whole gene deletion	

续表 2 31 例 HB 患者 F X 基因突变

	次水。 01 // 11D 心有 1 II 坐四人文				
序号	突变部位	位置	氨基酸变化	CpG	
24	31277. G>A	Exon8. 386	GGT-AGT(G-S)		
25	30975. T>G [#] 17517. T>G [#]	Exon8, CD330 Ivs4, 7011	GTT-GGT(V-G) Polymorphism?		
26	30961 GCTAAACA # 192. A>G	Exon8. CD325 Ivs1. 75	Fs Polymorphism		
27	17741. G>T	Exon5. 109	TGC-TTC(C-F)	Y	
28	20519. G>A	Exon6. 180	CGG-CAG(R-Q)	Y	
29	6332 . - T	Exon2. CD31	Fs		
30	6653 ATTT #	Ivs2. 163	Splice		
31	20557. C>T	Exon6. 193	CCT-TCT(P-S)		

Del:缺失;Exon:外显子;Ivs:內含子; #:为本研究首次报道的新突变;Fs:阅读框架位移;Polymorphism:多态性;Splice:剪切位点;?:未确定;Y:确定。

3 讨 论

FIX基因定位于 Xq27.1,基因全长约 33.5kb,由 8 个外显子、7 个内含子及其侧翼序列中的调控区所组成^[5],mRNA 全长 2 804 bp。FIX基因任意位置的缺陷引起蛋白结构功能和数量的改变,均可导致 HB 的发生。

HB基因突变类型种类繁多,以点突变、短片段的缺失(少于 30 bp)和插入突变多见,其中 80%左右为单个碱基的突变^[6]。不同于 HA,HB 的散发率可达 $30\%\sim50\%^{[7]}$ 。 1990 年 Brownlee 首次建立了 HB 突变数据库。随着病例数目的积累,新的缺陷正不断地被发现。从已报道的突变分布看,包括 polyA 信号在内的 FIX 基因所有区域均有突变发生。本研究除外 6 例缺失(一例全基因缺失和 5 例短片段缺失),其余均为点突变,占 80.6%。由于编码与 Ca^{2+} 结合的 EGF 区及催化区,外显子 4 和 8 的突变发生率较高^[8]。本研究中的 31 例患者,有 11 例发生于外显子 4 和 8,占 35.5%。而外显子 1、6、7 中突变较少,共占 19.4%。

CpG 双核苷酸区域被认为是突变热点[9-10],刘敬忠等[11] 采用 PCR 法和 GAWTS 技术也进一步证实了 CpG 确系突变热点,主要是 $(C \rightarrow T/A)$ 。研究中有 7 例发生在 CpG 热点上,类型为 $(C \rightarrow T)$, $(G \rightarrow A)$ 和 $(G \rightarrow T)$,占 22.6%。

Toyozumi 等^[12]确定了内含子 1 的第 192 核苷酸(FIX 192)为二核苷酸多态性位点,存在于健康日本人中。王宁遂等^[13]发现并计算出中国人 FIX-192A 和 G 的基因频率分别为 0.81 和 0.19。本研究中有 4 例患者的突变发生于此处,进一步验证了该基因此位置的多态性。2 例患者只检测出此惟一多态性位点需进一步检测未测序列,以确定致病突变位点。

经过最新的血友病 B 数据库资料查询,本研究共发现 13 种新突变,为国际上首次报道。其中 4 种为发生在外显子的错义突变,氨基酸改变分别为 L-Q、Y-D、S-P 和 V-G。除了-T 为已报道的导致阅读框架移位的突变点外,其余 3 种均为新发现的缺失突变类型,其中-GCTGAAACCA 和-GCTAAACA 引起阅读框架移位,根据剪切位点的位置判断[14],-ATTT 为剪接位点 缺失。此外,T6320A、C6828T、G6640A、A29753G、G30321T 和 T17517G 等 6 种突变发生于内含子部位,已知6320 为剪切位点,可确定 T6320A 为致病突变,其余 5 种突变是否为一种新的多态性或者为致病突变,则需要进一步研究。

本文报道了 31 例 HB 患者 FIX 基因突变的研究,对临床进行 HB 携带者筛查及产前基因诊断具有重要的参考和指导意义。而 FIX 基因新突变的发现,在丰富 HB 基因突变谱的同时,还有助于进一步了解 FIX 基因中某些氨基酸残基对于 FIX 凝血活性的重要性,为明确 HB 的分子致病机制提供了实验数据。

参考文献:

- [1] Giannelli F, Green PM, High KA, et al. Haemophilia B: database of point mutations and short additions and deletions-third edition[J]. Nucleic Acids Res, 1992, 20 (Supp l): 2027-2063.
- [2] 段宝华. 血友病 B 患者及其携带者基因诊断新进展[J]. 国外医学临床生物化学与检验学分册,2002,23(3):133-134.
- [3] Vidal F, Farssac E, Altisent C, et al. Factor IX gene sequencing by a simple and sensitive 15-hour procedure for haemophilia B diagnosis:identification of two novel mutations[J]. British J Haematol, 2000, 111(21):549-551.
- [4] Yoshitake S, Schach BG, Foster DC, et al. Nucleotide sequence of the gene for human factor(antihemophilic factor B) [J]. Biochemistry, 1985, 24(3): 3736-3750.
- [5] Bowen D. Haemophilia A and haemophilia B: molecular insigIlt8[J]. Mol Patllol, 2002, 55(2):127-144.
- [6] Garmen E, Pilar C, Satumino H, et al. Molecular analysis in hemophilia B families; identification of six new mutations in factor [X] gene[J]. Haematologiea, 2003, 88(101); 235-236.

- [7] Mukherjee S, Mukhopadhyay A, Chaudhuri K, et al. Analysis of haemophilia B database and strategies for identification of common point mutations in the factor [X] gene [J]. Haemophilia, 2003, 9(13):187-192.
- [8] 张媛,杨林花,陆晔玲,等.应用 DNA 测序技术检测血友 病 B 患者 F [X 基因突变[J]].中国实验血液学杂志,2009, 17(2):476-478.
- [10] 王宁遂,邓兵,朱静.应用多聚酶链反应和双链 DNA 循环 测序对 F IX 基因点突变的研究[J]. 中华血液学杂志, 1995,16(5):227-228.
- [11] 刘敬忠,张纪平,陈怀华,等. 27 例乙型血友病患者 IX 因子基突变研究[J]. 高技术通讯,1994,4(3):29-32.
- [12] Toyozumi H, Kojima T, Matsushita T, et al. Diagnosis of hemophilia B carriers using two novel dinucleotide polymophisms and HhaI RFLP of the factor [X] gene in Japanese subjects [J]. Thromb Haemost, 1995, 74(4): 1009-1014.
- [13] 王宁遂,邓兵,朱静.一种 FIX基因多态性在我国人群中的检出[J].中华医学遗传学杂志,1994,11(4):217-218.
- [14] Ketterling RP, Drost JB, Scaring WA, et al. Reported in vivo splice-site mutations in the factor [X] gen severity of splicing defects and a hypothesis for predicting deleterions splice donr mutation[J]. Human Mutation, 1999, 13 (7):221-231.

(收稿日期:2011-12-08 修回日期:2012-01-15)

(上接第 1167 页)

莫地平后的安全性问题,尚需大样本的观察研究。

综上所述,醒脑静联合尼莫地平能有效提高治疗急性脑梗死的疗效,尤其能显著改善轻度脑梗死患者的预后,且未发现安全性问题,因此,值得在临床中推广。

参考文献:

- [1] 王德新. 神经病学[M]. 北京: 人民军医出版社, 2001: 253.
- [2] 陈皆能. 醒脑静注射液治疗急性脑梗死 30 例临床疗效观察[J]. 中国当代医药,2011,18(7):76-79.
- [3] 张志彬,王旭,王平.尼莫地平注射液治疗蛛网膜下腔出血疗效观察[J].中国误诊学杂志,2011,11(24):5852.
- [4] 张永利,郝国,张杰.尼莫地平防治蛛网膜下腔出血后脑血管痉挛临床观察[J].中国实用神经疾病杂志,2011,14 (11);91-92,
- [5] 中华神经科学会,中华神经外科学会.各类脑血管疾病诊断要点[J].中华神经科杂志,1996,29(6):379.
- [6] 中华医学会全国第四届脑血管病学术会议. 脑卒中患者临床神经功能损伤程度评分标准(1995)[J]. 中华神经科杂志,1996,29(6):381-383.
- [7] 陈兵,孟祥红,耿晓非,等. 急性脑梗死患者血超敏 C 反应 蛋白和 D-二聚体含量的改变及其临床意义[J]. 临床神经

- 病学杂志,2008,21(2):142-143.
- [8] 魏江磊,邵念方.醒脑静注射液治疗急性缺血性脑卒中临床疗效的研究[J].中西医结合实用临床急救,1999,6(5):197.
- [9] 张健莉. 依达拉奉联合醒脑静治疗急性脑梗死的临床疗效观察[J]. 中国现代医生,2011,49(1):27-28.
- [10] Okten AI, Gezerean Y, Ergun R. Traumatic subarachnoid hemorrhage: a prospective study of 58 cases [J] Ulus Travma Acil Cerrahi Derg, 2006, 12(2): 107-114.
- [11] 陈新谦,金有豫,汤光.新编药物学[M]. 14 版.北京:人民卫生出版社,2011:366.
- [12] 曹启富,刘军,仇长刘. 尼莫地平改善急性脑梗死脑缺血 缺氧的临床研究[J]. 中国现代医药杂志,2004,6(5):15-
- [13] 唐胜文,沈为林. 尼莫地平治疗急性脑梗死疗效观察[J]. 现代中西医结合杂志,2011,20(2):181-182.
- [14] 郭国际,李淮玉,丁小灵,等. 急危重症脑卒中[M]. 安徽: 安徽科学技术出版社,2009:133.
- [15] 王卫平,尼莫地平在脑出血的应用[J].四川医学,2010,31(7);950-952.

(收稿日期:2011-12-02 修回日期:2012-01-05)